1
|
Cao G, Xu J, Han L, Wang Y, Zhao W, Zhou X, Lee Y, Loh W, Tam KC. Interactions between cellulose nanocrystals and conventional/gemini surfactants. Carbohydr Polym 2025; 351:123132. [PMID: 39779035 DOI: 10.1016/j.carbpol.2024.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Research on the interaction between surfactants and cellulose nanocrystals (CNC) has mainly focused on the interaction between CNC and conventional surfactants, and there are no reported studies on the interaction between CNC and gemini surfactants. The interactions between CNC and conventional surfactant (tetradecyltrimethylammonium bromide, termed as TTAB), asymmetric gemini surfactant ([C14H29(CH3)2N+(CH2)6N+(CH3)2C6H13]Br (14-6-6)) or symmetric gemini surfactant ([C14H29(CH3)2N+(CH2)6N+(CH3)2C14H29]Br2 (14-6-14)) were examined. With increasing surfactant concentration, interaction of TTAB/CNC was described by three regions, i.e. electrostatic interaction, CNC induced micellization and dilution of free micelles. However, in the case of gemini surfactant/CNC, four binding regimes were observed, i.e. cooperative adsorption, CNC induced micellization, formation and dilution of free micelles. The behavior of 14-6-6/CNC was similar to 14-6-14/CNC where CNC promoted the partition of gemini surfactant to the air-water interface at high surfactant concentration, while it was inhibited at low surfactant concentration. At low CNC concentration, micellization induced by CNC and aggregation of surfactant/CNC complexes were absent. pH had a minimal impact on the binding process at low CNC concentration, but it affected the binding at higher CNC concentration. Additionally, the presence of electrolytes influenced the micellization process induced by CNC by reducing the electrostatic interactions.
Collapse
Affiliation(s)
- Gaili Cao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jiaxin Xu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lian Han
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yi Wang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Weinan Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoming Zhou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yebin Lee
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Watson Loh
- Institute of Chemistry Universidade Estadual de Campinas (UNICAMP), CP 6154, CEP 13083-970 Campinas, SP, Brazil
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
2
|
Sarker P, Su X, Rojas OJ, Khan SA. Colloidal interactions between nanochitin and surfactants: Connecting micro- and macroscopic properties by isothermal titration calorimetry and rheology. Carbohydr Polym 2024; 341:122341. [PMID: 38876727 DOI: 10.1016/j.carbpol.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
This study elucidates the intricate interactions between chitin nanocrystals (ChNC) and surfactants of same hydrophobic tail (C12) but different head groups types (anionic, cationic, nonionic): sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and polyoxyethylene(23)lauryl ether (Brij-35). Isothermal Titration Calorimetry (ITC) and rheology are used to study the complex ChNC-surfactant interactions in aqueous media, affected by adsorption, self-assembly and micellization. The ITC results demonstrate that the surfactant head group significantly influences the dynamics and nature of the involved phenomena. Cationic DTAB's reveal minimal interaction with ChNC, non-ionic Brij-25's interact moderately at low concentrations driven by hydrophobic effects while SDS's interacts strongly and show complex interaction patterns that fall across four distinct regimes with SDS addition. We attribute such behavior to initiate through electrostatic attraction and terminate in surfactant micelle formation on ChNC surfaces. ITC also elucidates the impact of ChNC concentration on key parameters including critical aggregation concentration (CAC) and saturation concentration (C2). Dynamic rheological analysis indicates the molecular interactions translate to non-linear variations in the elastic modulus (G') upon SDS addition mirroring that observed in ITC experiments. Such a direct correlation between molecular interactions and macroscopic rheological properties provides insights to aid in the creation of nanocomposites with tailored properties.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaoya Su
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
3
|
Hollingham M, Xiang Y, Reed T, Pablo Gevaudan J. OpenHW3 - An open-source, low-cost temperature-controlled orbital shaker. HARDWAREX 2024; 19:e00570. [PMID: 39262424 PMCID: PMC11387928 DOI: 10.1016/j.ohx.2024.e00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
The current lack of standardized testing methods to assess the binding isotherms of ions in cement and concrete research leads to uncontrolled variability in these results. In this study, an open-source and low-cost apparatus, named OpenHW3, is proposed to accurately measure the binding isotherms of ions in various cementitious material systems. OpenHW3 provides two main options, a temperature-controlled orbital shaker, as well as an option to retrofit a commercial orbital shaker for temperature control. The effectiveness of these device options is validated via comparison with conventional binding isotherms experiments. The binding isotherm results were comparable to conventional Waterbath shakers, while providing more reliable results compared to horizontal commercial shakers. It also provided accurate temperature control between 25 °C and 75 °C. The results here are critical for allowing open access to scientific equipment, and providing high-quality binding isotherm data for reliable service life models of urban infrastructure assets throughout the world.
Collapse
Affiliation(s)
| | - Yi Xiang
- Re-AIM Laboratory, The Pennsylvania State University, USA
| | - Titus Reed
- Re-AIM Laboratory, The Pennsylvania State University, USA
| | | |
Collapse
|
4
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
5
|
Vitorazi L, Berret JF. Mixing Order Asymmetry in Nanoparticle-Polymer Complexation and Precipitation Revealed by Isothermal Titration Calorimetry. J Phys Chem B 2024; 128:7859-7870. [PMID: 39102566 DOI: 10.1021/acs.jpcb.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In recent years, there has been a renewed interest in complex coacervation, driven by concerted efforts to offer novel experimental and theoretical insights into electrostatic charge-induced association. While previous studies have primarily focused on polyelectrolytes, proteins, or surfactants, our work explores the potential of using cerium (CeO2) and iron (γ-Fe2O3) oxide nanoparticles (NPs) to develop innovative nanomaterials. By combining various charged species, such as polyelectrolytes, charged neutral block copolymers, and coated NPs, we study a wide variety of complexation patterns and compare them using isothermal titration calorimetry, light scattering, and microscopy. These techniques confirm that the titration of oppositely charged species occurs in two steps: the formation of polyelectrolyte complexes and subsequent phase (or microphase) separation, depending on the system studied. Across all examined cases, the entropic contribution to the total free energy surpasses the enthalpic contribution, in agreement with counterion release mechanisms. Furthermore, our investigation reveals a consistent asymmetry in the reaction enthalpy associated with the secondary process, with exothermic profiles observed upon the addition of cationic species to anionic ones and endothermic profiles in the reverse case.
Collapse
Affiliation(s)
- Letícia Vitorazi
- CNRS, Matière et Systèmes Complexes, Université Paris Cité, 75013 Paris, France
- Laboratório de Polímeros, Nanomateriais e Química Supramolecular, EEIMVR, Universidade Federal Fluminense, Avenida dos Trabalhadores, 420, Volta Redonda, RJ CEP 27225-125, Brazil
- Programa de Pós-Graduação em Engenharia Metalúrgica, EEIMVR, Universidade Federal Fluminense, Avenida dos Trabalhadores, 420, Volta Redonda, RJ CEP 27225-125, Brazil
| | | |
Collapse
|
6
|
Wang Z, Hu J, Wang H. Hierarchical Polyimide Microparticles with Controllable Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400487. [PMID: 38537118 DOI: 10.1002/smll.202400487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Indexed: 08/17/2024]
Abstract
Hierarchical polyimides (PIs) not only show outstanding thermal stability and high mechanical strength but also have great advantages in terms of microstructure and surface area, which makes them highly valuable in various fields such as aerospace, microelectronics, adsorption, catalysis, and energy storage. However, great challenges still remain in the synthesis of hierarchical PIs with well-defined microstructure. Herein, polyamide acid salts (PAAS) with tunable ionization degree are synthesized first via the polymerization of dianhydride and diamine monomers in deionized water with 1,2-dimethylimidazole (DMIZ). Then cationic cetyltrimethylammonium chloride (CTAC) is added to the PAAS aqueous solution to induce the formation of polyelectrolyte-surfactant complexes based on electrostatic interaction. After a typical hydrothermal reaction (HTR) procedure, hierarchical PIs with different microstructures such as urchin-like PI microparticles, flower-like PI microparticles, and lamellar PI petals can be fabricated simply by changing the additive amount of DMIZ and CTAC. The nanostructure self-assemblies of PAAS are dominated by the charges on macromolecular chains and the formation of hierarchical structures of polymers is ascribed to a geometrical selection process during crystal growth. This work provides valuable insights into the self-assembly behaviors of polyelectrolyte systems for synthesizing well-defined hierarchical polymers.
Collapse
Affiliation(s)
- Zhichao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Kadiri A, Fergoug T, Sebakhy KO, Bouhadda Y, Aribi R, Yssaad F, Daikh Z, El Hariri El Nokab M, Van Steenberge PHM. Insights into the Characterization of the Self-Assembly of Different Types of Amphiphilic Molecules Using Dynamic Light Scattering. ACS OMEGA 2023; 8:47714-47722. [PMID: 38144148 PMCID: PMC10734291 DOI: 10.1021/acsomega.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 12/26/2023]
Abstract
The self-assembly of cetyltrimethylammonium bromide, sodium dodecylsulfate, Triton X-100, and sulfobetaine surfactants in aqueous solutions was examined by dynamic light scattering, both in the presence and absence of 0.1 M NaCl salt, across various temperatures. For each surfactant, critical parameters, such as concentration and phase transition temperatures, of micelles were determined by monitoring changes in the hydrodynamic diameter with concentration and temperature. Additionally, we explored the self-assembly behavior of these surfactants when they are introduced alongside polystyrene nanoparticles. Our findings enabled the elucidation of surfactant molecule adsorption mechanisms onto polystyrene nanoparticle surfaces. Furthermore, by analyzing variations in the z-average diameter and zeta potential, we were able to establish the Krafft point, a parameter that remains imperceptible when polystyrene nanoparticles are absent from the solution.
Collapse
Affiliation(s)
- Aicha Kadiri
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Teffaha Fergoug
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Khaled O. Sebakhy
- Department
of Materials, Textiles and Chemical Engineering, Laboratory for Chemical
Technology (LCT), University of Gent, Technologiepark 125, Zwijnaarde 9052, Belgium
| | - Youcef Bouhadda
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Rachida Aribi
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Fatima Yssaad
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Zineeddine Daikh
- Laboratory
of Physical Chemistry of Macromolecules and Biological Interfaces, Mustapha Stambouli University, Mascara 29000, Algeria
| | - Mustapha El Hariri El Nokab
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, Groningen 9700, The Netherlands
| | - Paul H. M. Van Steenberge
- Department
of Materials, Textiles and Chemical Engineering, Laboratory for Chemical
Technology (LCT), University of Gent, Technologiepark 125, Zwijnaarde 9052, Belgium
| |
Collapse
|
8
|
Yielding and thixotropic cellulose microgel-based network in high-content surfactant for stably suspending of functional beads. Int J Biol Macromol 2022; 224:1283-1293. [DOI: 10.1016/j.ijbiomac.2022.10.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
9
|
Blagodatskikh IV, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE, Orlov VN, Shabelnikova YL, Khokhlov AR. Peculiarities of the interaction of sodium dodecyl sulfate with chitosan in acidic and alkaline media. Int J Biol Macromol 2022; 214:192-202. [PMID: 35709870 DOI: 10.1016/j.ijbiomac.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
In this work, the interaction between the negatively charged surfactant sodium dodecyl sulfate (SDS) and partially N-reacetylated chitosan (RA-CHI), which is soluble at pH range up to pH 12, is studied in a wide pH range including alkaline media by light scattering (LS) and isothermic titration calorimetry (ITC). It is shown that in the weakly alkaline medium (pH 7.4), RA-CHI/SDS interaction is exothermic and cooperative. This interaction is found to be coupled with proton transfer from the buffer substance to chitosan as it is revealed by the dependence of the measured heat release on the ionization enthalpy of the buffer. At higher pH values (pH > 8), another mechanism of interaction is observed that include SDS micellization induced by hydrophobic interactions with polymer segments, so that no phase separation occurred in these mixtures. The results obtained can contribute to expand the knowledge about application of chitosan for preparation of pharmaceutical and cosmetic compositions containing anionic surfactants.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia.
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow 119992, Russia
| | - Yana L Shabelnikova
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Academician Osipyan St. 6, 142432 Chernogolovka, Moscow Region, Russia
| | - Alexey R Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
10
|
Tsuei M, Sun H, Kim YK, Wang X, Gianneschi NC, Abbott NL. Interfacial Polyelectrolyte-Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:332-342. [PMID: 34967209 DOI: 10.1021/acs.langmuir.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolytes adsorbed at soft interfaces are used in contexts such as materials synthesis, stabilization of emulsions, and control of rheology. Here, we explore how polyelectrolyte adsorption to aqueous interfaces of thermotropic liquid crystals (LCs) influences surfactant-stabilized aqueous microdroplets that are elastically trapped within the LCs. We find that adsorption of poly(diallyldimethylammonium chloride) (PDDA) to the interface of a nematic phase of 4-cyano-4'-pentylbiphenyl (5CB) triggers the ejection of microdroplets decorated with sodium dodecylsulfate (SDS), consistent with an attractive electrical double layer interaction between the microdroplets and LC interface. The concentration of PDDA that triggers release of the microdroplets (millimolar), however, is three orders of magnitude higher than that which saturates the LC interfacial charge (micromolar). Observation of a transient reorientation of the LC during escape of microdroplets leads us to conclude that complexes of PDDA and SDS form at the LC interface and thereby regulate interfacial charge and microdroplet escape. Poly(sodium 4-styrenesulfonate) (PSS) also triggers escape of dodecyltrimethylammonium bromide (DTAB)-decorated aqueous microdroplets from 5CB with dynamics consistent with the formation of interfacial polyelectrolyte-surfactant complexes. In contrast to PDDA-SDS, however, we do not observe a transient reorientation of the LC when using PSS-DTAB, reflecting weak association of DTAB and PSS and slow kinetics of formation of PSS-DTAB complexes. Our results reveal the central role of polyelectrolyte-surfactant dynamics in regulating the escape of the microdroplets and, more broadly, that LCs offer the basis of a novel probe of the structure and properties of polyelectrolyte-surfactant complexes at interfaces. We demonstrate the utility of these new insights by triggering the ejection of microdroplets from LCs using peptide-polymer amphiphiles that switch their net charge upon being processed by enzymes. Overall, our results provide fresh insight into the formation of polyelectrolyte-surfactant complexes at aqueous-LC interfaces and new principles for the design of responsive soft matter.
Collapse
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyengbuk 37673, Korea
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Kancharla S, Bedrov D, Tsianou M, Alexandridis P. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J Colloid Interface Sci 2021; 609:456-468. [PMID: 34815085 DOI: 10.1016/j.jcis.2021.10.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
12
|
Hill C, Abdullahi W, Dalgliesh R, Crossman M, Griffiths PC. Charge Modification as a Mechanism for Tunable Properties in Polymer-Surfactant Complexes. Polymers (Basel) 2021; 13:2800. [PMID: 34451340 PMCID: PMC8397960 DOI: 10.3390/polym13162800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Oppositely charged polymer-surfactant complexes are frequently explored as a function of phase space defined by the charge ratio Z, (where Z = [+polymer]/[-surfactant]), commonly accessed through the surfactant concentration. Tuning the phase behaviour and related properties of these complexes is an important tool for optimising commercial formulations; hence, understanding the relationship between Z and bulk properties is pertinent. Here, within a homologous series of cationic hydroxyethyl cellulose (cat-HEC) polymers with minor perturbations in the degree of side chain charge modification, phase space is instead explored through [+polymer] at fixed Cpolymer. The nanostructures were characterised by small-angle neutron scattering (SANS) in D2O solutions and in combination with the oppositely charged surfactant sodium dodecylsulfate (h- or d-SDS). Scattering consistent with thin rods with an average radius of ∼7.7 Å and length of ∼85 Å was observed for all cat-HEC polymers and no significant interactions were shown between the neutral HEC polymer and SDS (CSDS < CMC). For the charge-modified polymers, interactions with SDS were evident and the radius of the formed complexes grew up to ∼15 Å with increasing Z. This study demonstrates a novel approach in which the Z phase space of oppositely charged polymer-surfactant complexes can be controlled at fixed concentrations.
Collapse
Affiliation(s)
- Christopher Hill
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| | - Wasiu Abdullahi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| | - Robert Dalgliesh
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK;
| | - Martin Crossman
- Unilever Research, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK;
| | - Peter Charles Griffiths
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| |
Collapse
|
13
|
Del Sorbo GR, Cristiglio V, Clemens D, Hoffmann I, Schneck E. Influence of the Surfactant Tail Length on the Viscosity of Oppositely Charged Polyelectrolyte/Surfactant Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Rosario Del Sorbo
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Viviana Cristiglio
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Daniel Clemens
- Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, D-14109 Berlin, Germany
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
14
|
Oliveira IS, Silva JP, Araújo MJ, Gomes AC, Marques EF. Biocompatible thermosensitive nanostructures and hydrogels of an amino acid-derived surfactant and hydroxyethyl cellulose polymers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|
16
|
Penfold J, Thomas RK. Counterion Condensation, the Gibbs Equation, and Surfactant Binding: An Integrated Description of the Behavior of Polyelectrolytes and Their Mixtures with Surfactants at the Air-Water Interface. J Phys Chem B 2020; 124:6074-6094. [PMID: 32608983 DOI: 10.1021/acs.jpcb.0c02988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By applying the Gibbs equation to the bulk binding isotherms and surface composition of the air-water (A-W) interface in polyelectrolyte-surfactant (PE-S) systems, we show that their surface behavior can be explained semiquantitatively in terms of four concentration regions, which we label as A, B, C, and D. In the lowest-concentration range A, there are no bound PE-S complexes in the bulk but there may be adsorption of PE-S complexes at the surface. When significant adsorption occurs in this region, the surface tension (ST) drops with increasing concentration like a simple surfactant solution. Region B extends from the onset of bulk PE-S binding to the end of cooperative binding, in which the slow variation of surfactant activity with cooperative binding means that the ST changes relatively little, although adsorption may be significant. This leads to an approximate plateau, which may be at high or low ST. Region C starts where the binding in the bulk complex loses its cooperativity leading to a rapid change of surfactant activity with the total concentration. This, combined with significant adsorption, often leads to a sharp drop in ST. Region D is where precipitation and redissolution of the bulk PE-S complex occur. ST peaks may arise in region D because of loss of the solution complex that matches the value of the preferred surface stoichiometry, which seems to have a well-defined value for each system. The analysis is applied to the experimental systems, sodium polystyrene sulfonate-alkyltrimethylammonium bromides and poly(diallyldimethyl chloride)-sodium alkyl sulfates, with and without the added electrolyte, and includes data from bulk binding isotherms, phase diagrams, aggregation behavior, and direct measurements of the surface excess and stoichiometry of the surface. The successful fits of the Gibbs equation to the data confirm that the surfaces in these systems are largely equilibrated.
Collapse
Affiliation(s)
- Jeffrey Penfold
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
17
|
|
18
|
Kargerová A, Pekař M. Ultrasonic study of hyaluronan interactions with Septonex-A pharmaceutical cationic surfactant. Carbohydr Polym 2019; 204:17-23. [PMID: 30366528 DOI: 10.1016/j.carbpol.2018.09.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Interactions between hyaluronan and the cationic surfactant Septonex were studied using high resolution ultrasound spectroscopy. Four different interaction regions were identified in aqueous solution in a narrow interval of surfactant concentrations. In contrast, in 0.15 mol/L NaCl solution, essentially only two principal regions were observed. Hyaluronan-Septonex aggregates were generally less compressible than Septonex monomers or micelles and their formation in water was not appreciably affected by hyaluronan molecular weight. In the presence of NaCl, the effect of hyaluronan molecular weight was more profound, which can be ascribed to its conformational sensitivity to ionic strength combined with its role as a surfactant counterion. Hyaluronan-Septonex interactions were closer to interactions with CTAB than with TTAB. Differences in structure or Krafft temperature (solubility) between Septonex and CTAB were thus not significantly reflected in these interactions. The basic characteristics of Septonex surfactant were also determined.
Collapse
Affiliation(s)
- A Kargerová
- Brno University of Technology, Faculty of Chemistry, Materials Research Centre, Purkyňova 118, Brno, CZ-61200, Czech Republic
| | - M Pekař
- Brno University of Technology, Faculty of Chemistry, Materials Research Centre, Purkyňova 118, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
19
|
Khan N, Brettmann B. Intermolecular Interactions in Polyelectrolyte and Surfactant Complexes in Solution. Polymers (Basel) 2018; 11:E51. [PMID: 30960035 PMCID: PMC6401804 DOI: 10.3390/polym11010051] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Polyelectrolytes are an important class of polymeric materials and are increasingly used in complex industrial formulations. A core use of these materials is in mixtures with surfactants, where a combination of hydrophobic and electrostatic interactions drives unique solution behavior and structure formation. In this review, we apply a molecular level perspective to the broad literature on polyelectrolyte-surfactant complexes, discussing explicitly the hydrophobic and electrostatic interaction contributions to polyelectrolyte surfactant complexes (PESCs), as well as the interplay between the two molecular interaction types. These interactions are sensitive to a variety of solution conditions, such as pH, ionic strength, mixing procedure, charge density, etc. and these parameters can readily be used to control the concentration at which structures form as well as the type of structure in the bulk solution.
Collapse
Affiliation(s)
- Nasreen Khan
- Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Blair Brettmann
- Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
20
|
de Silva UK, Brown J, Lapitsky Y. Poly(allylamine)/tripolyphosphate coacervates enable high loading and multiple-month release of weakly amphiphilic anionic drugs: an in vitro study with ibuprofen. RSC Adv 2018; 8:19409-19419. [PMID: 35540986 PMCID: PMC9080659 DOI: 10.1039/c8ra02588f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs. Colloidal amphiphile/polyelectrolyte complex dispersions are first prepared by mixing the amphiphilic drug (ibuprofen) with PAH. Pentavalent tripolyphosphate (TPP) ions are then added to these dispersions to form ibuprofen-loaded PAH/TPP coacervates (where the strongly-binding TPP displaces the weaker-bound ibuprofen from the PAH amine groups). The initial ibuprofen/PAH binding leads to extremely high drug loading capacities (LC-values), where the ibuprofen comprises up to roughly 30% of the coacervate mass. Conversely, the dense ionic crosslinking of PAH by TPP results in very slow release rates, where the release of ibuprofen (a small, water-soluble drug) is extended over timescales that exceed 6 months. When ibuprofen is replaced with strong anionic amphiphiles, however (i.e., sodium dodecyl sulfate and sodium dodecylbenzenesulfonate), the stronger amphiphile/polyelectrolyte binding disrupts PAH/TPP association and sharply increases the coacervate solute permeability. These findings suggest that: (1) as sustained release vehicles, PAH/TPP coacervates might be very attractive for the encapsulation and multiple-month release of weakly amphiphilic anionic payloads; and (2) strong amphiphile incorporation could be useful for tailoring PAH/TPP coacervate properties. Gel-like coacervates prepared through ionotropic gelation enable very high loading and multiple-month release of weakly amphiphilic small molecules. Conversely, strong amphiphile incorporation disrupts ionic crosslinking and strikingly alters the coacervate properties.![]()
Collapse
Affiliation(s)
| | | | - Yakov Lapitsky
- Department of Chemical Engineering
- University of Toledo
- Toledo
- USA
- School of Green Chemistry and Engineering
| |
Collapse
|
21
|
Electro-optic Kerr effect in the study of mixtures of oppositely charged colloids. The case of polymer-surfactant mixtures in aqueous solutions. Adv Colloid Interface Sci 2017; 247:234-257. [PMID: 28552423 DOI: 10.1016/j.cis.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 11/20/2022]
Abstract
In this review I highlight a very sensitive experimental technique for the study of polymer-surfactant complexation: The electro-optic Kerr effect. This review does not intend to be exhaustive in covering the Kerr Effect nor polymer-surfactant systems, instead it aims to call attention to an experimental technique that, even if applied in a qualitative manner, could give very rich and unique information about the structures and aggregation processes occurring in mixtures of oppositely charged colloids. The usefulness of electric birefringence experiments in the study of such systems is illustrated by selected results from literature in hope of stimulating the realization of more birefringence experiments on similar systems. This review is mainly aimed at, but not restricted to, researchers working in polyelectrolyte-surfactant mixtures in aqueous solutions, Kerr effect is a powerful experimental tool that could be used in the study of many systems in diverse areas of colloidal physics.
Collapse
|
22
|
Canterbury TR, Arachchige SM, Brewer KJ, Moore RB. Probing Co-Assembly of Supramolecular Photocatalysts and Polyelectrolytes Using Isothermal Titration Calorimetry. J Phys Chem B 2017; 121:6238-6244. [DOI: 10.1021/acs.jpcb.7b02462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Karen J. Brewer
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212, United States
| | - Robert B. Moore
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212, United States
| |
Collapse
|
23
|
Influence of salt on interaction between imidazolium based ionic liquid [C 12 mim][Br] and anionic polyelectrolyte poly(sodium-4-styrenesulfonate). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Krouská J, Pekař M, Klučáková M, Šarac B, Bešter-Rogač M. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry. Carbohydr Polym 2017; 157:1837-1843. [DOI: 10.1016/j.carbpol.2016.11.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 11/26/2022]
|
25
|
Kayitmazer AB. Thermodynamics of complex coacervation. Adv Colloid Interface Sci 2017; 239:169-177. [PMID: 27497750 DOI: 10.1016/j.cis.2016.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
Abstract
Isothermal titration calorimetry has routinely been used to understand the thermodynamic characteristics of complexation and coacervation. Most commonly, built-in models that assume independent binding sites have been employed in these studies. However, the non-covalent nature of interactions and steric effects accompanying macromolecules require (i) usage of new models such as overlapping binding sites and Satake-Yang's two-state binding models and (ii) reformed interpretations of the data as two-stage structuring. Fitting data with these models, forces driving the interaction of polyelectrolytes with oppositely charged polyelectrolytes, surfactants, and proteins have been identified as electrostatics and/or counterion release with possible contributions from hydrogen bonding and hydrophobic interactions. Additionally, for surfactant-polyelectrolyte coacervation, ITC signals indicated separate regions for formation of polymer-induced micelles and free micelles. Regardless of the type of the coacervation system, thermodynamics of coacervation is affected by the following parameters: pH and ionic strength of the medium, charge density, molecular weight of the polyelectrolyte, concentration, and mixing order of macroions. Lastly, we present a brief comparison between ITC on one hand and surface plasmon resonance or capillary electrophoresis on the other regarding their application in coacervation.
Collapse
|
26
|
Chabba S, Vashishat R, Mahajan RK. Influence of head group on the interactional behavior of cationic surface active ionic liquids with pluronic F108 in aqueous medium. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Hoffmann I, Simon M, Farago B, Schweins R, Falus P, Holderer O, Gradzielski M. Structure and dynamics of polyelectrolyte surfactant mixtures under conditions of surfactant excess. J Chem Phys 2016; 145:124901. [PMID: 27782635 DOI: 10.1063/1.4962581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ingo Hoffmann
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin, Germany
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin, Germany
| | - Bela Farago
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Ralf Schweins
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Peter Falus
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Olaf Holderer
- JCNS Outstation at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin, Germany
| |
Collapse
|
28
|
Guzmán E, Llamas S, Maestro A, Fernández-Peña L, Akanno A, Miller R, Ortega F, Rubio RG. Polymer-surfactant systems in bulk and at fluid interfaces. Adv Colloid Interface Sci 2016; 233:38-64. [PMID: 26608684 DOI: 10.1016/j.cis.2015.11.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
The interest of polymer-surfactant systems has undergone a spectacular development in the last thirty years due to their complex behavior and their importance in different industrial sectors. The importance can be mainly associated with the rich phase behavior of these mixtures that confers a wide range of physico-chemical properties to the complexes formed by polymers and surfactants, both in bulk and at the interfaces. This latter aspect is especially relevant because of the use of their mixture for the stabilization of dispersed systems such as foams and emulsions, with an increasing interest in several fields such as cosmetic, food science or fabrication of controlled drug delivery structures. This review presents a comprehensive analysis of different aspects related to the phase behavior of these mixtures and their intriguing behavior after adsorption at the liquid/air interface. A discussion of some physical properties of the bulk is also included. The discussion clearly points out that much more work is needed for obtaining the necessary insights for designing polymer-surfactant mixtures for specific applications.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Sara Llamas
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Istituto per l'Energetica e le Interfasi-U.O.S. Genova-Consiglio Nazionale delle Ricerche Via de Marini 6, 16149, Genova, Italy
| | - Armando Maestro
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Laura Fernández-Peña
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Akanno
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar-Universidad Complutense de Madrid, Avenida Juan XXIII 1, 28040, Madrid, Spain
| | - Reinhard Miller
- Max-Planck-Institut für Kolloid und Grenzflächenforschung, Am Mühlenberg 1, 14476-Golm, Potsdam, Germany
| | - Francisco Ortega
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar-Universidad Complutense de Madrid, Avenida Juan XXIII 1, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Brinatti C, Huang J, Berry RM, Tam KC, Loh W. Structural and Energetic Studies on the Interaction of Cationic Surfactants and Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:689-98. [PMID: 26731488 DOI: 10.1021/acs.langmuir.5b03893] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report a comprehensive study on the interactions between cationic surfactant homologues CnTAB (n = 12, 14, and 16) with negatively charged cellulose nanocrystals (CNCs). By combining different techniques, such as isothermal titration calorimetry (ITC), surface tension, light scattering, electrophoretic mobility, and fluorescence anisotropy measurements, we identified two different driving forces for the formation of surface induced micellar aggregates. For the C12TAB surfactant, a surfactant monolayer with the alkyl chains exposed to the water is formed via electrostatic interactions at low concentration. At a higher surfactant concentration, micellar aggregates are formed at the CNC surface. For the C14TAB and C16TAB systems, micellar aggregates are formed at the CNC surface at a much lower surfactant concentration via electrostatic interactions, followed by hydrophobic interactions between the alkyl chains. At higher surfactant concentration, charge neutralization and association of the surfactant decorated CNC aggregates led to flocculation.
Collapse
Affiliation(s)
- César Brinatti
- Institute of Chemistry - Universidade Estadual de Campinas (UNICAMP) , CP 6154, CEP 13083-970, Campinas, SP Brazil
| | - John Huang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology University of Waterloo , 200 University Avenue West, Ontario N2L 3G1, Canada
| | - Richard M Berry
- CelluForce Inc. , 625, Président-Kennedy Avenue, Montreal, Quebec H3A 1K2, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology University of Waterloo , 200 University Avenue West, Ontario N2L 3G1, Canada
| | - Watson Loh
- Institute of Chemistry - Universidade Estadual de Campinas (UNICAMP) , CP 6154, CEP 13083-970, Campinas, SP Brazil
| |
Collapse
|
30
|
Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochim Biophys Acta Gen Subj 2015; 1860:999-1016. [PMID: 26459003 DOI: 10.1016/j.bbagen.2015.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/23/2015] [Accepted: 10/07/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Isothermal titration calorimetry (ITC) is a general technique that allows for precise and highly sensitive measurements. These measurements may provide a complete and accurate thermodynamic description of association processes in complex systems such as colloidal mixtures. SCOPE OF THE REVIEW This review will address uses of ITC for studies of surfactant aggregation to form micelles, with emphasis on the thermodynamic studies of homologous surfactant series. We will also review studies on surfactant association with polymers of different molecular characteristics and with colloidal particles. GENERAL SIGNIFICANCE ITC studies on the association of different homologous series of surfactants provide quantitative information on independent contribution from their apolar hydrocarbon chains and polar headgroups to the different thermodynamic functions associated with micellization (Gibbs energy, enthalpy and entropy). Studies on surfactant association to polymers by ITC provide a comprehensive description of the association process, including examples in which particular features revealed by ITC were elucidated by using ancillary techniques such as light or X-ray scattering measurements. Examples of uses of ITC to follow surfactant association to biomolecules such as proteins or DNA, or nanoparticles are also highlighted. Finally, recent theoretical models that were proposed to analyze ITC data in terms of binding/association processes are discussed. MAJOR CONCLUSIONS This review stresses the importance of using direct calorimetric measurements to obtain and report accurate thermodynamic data, even in complex systems. These data, whenever possible, should be confirmed and associated with other ancillary techniques that allow elucidation of the nature of the transformations detected by calorimetric results, providing a complete description of the process under scrutiny.
Collapse
|
31
|
Cho W, Liu X, Forrest J, Fowler JD, Furst EM. Controlling the Morphology of Organic Crystals with Filamentous Bacteriophages. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15707-15715. [PMID: 26153618 DOI: 10.1021/acsami.5b05548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The preparation of thiamethoxam (TMX) organic crystals with high morphological uniformity was achieved by controlled aggregation-driven crystallization of primitive TMX crystals and phage using the filamentous M13 bacteriophage. The development of a regular, micrometer-sized, tetragonal-bipyramidal crystal structure was dependent on the amount of phage present. The phage appears to affect the supersaturation driving force for crystallization. The phage adsorption isotherm to TMX was well-fitted by the Satake-Yang model, which suggests a cooperative binding between neighboring phages as well as a binding of phage with the TMX crystal surface. This study shows the potential of phage additives to control the morphology and morphological uniformity of organic crystals.
Collapse
Affiliation(s)
- Whirang Cho
- †Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Xiaomeng Liu
- ‡Syngenta Crop Protection 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - James Forrest
- ‡Syngenta Crop Protection 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Jeffrey D Fowler
- ‡Syngenta Crop Protection 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Eric M Furst
- †Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
32
|
Zhang P, Xu X, Zhang M, Wang J, Bai G, Yan H. Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7919-7925. [PMID: 25665149 DOI: 10.1021/la504949f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The self-aggregation of amphiphilic dendrimers G1QPAMCm based on poly(amidoamine) PAMAM possessing the same hydrophilic group but differing in alkyl chain length in aqueous solution was investigated. Differences in the chemical structures lead to significant specificities in the aggregate building process. A variety of physicochemical parameters presented monotonous regularity with the increase in alkyl chain length in multibranched structure, as traditional amphiphilic molecules. A significant difference, however, existed in the morphology and the microenvironment of the microdomain of the aggregates, with G1QPAMCm with an alkyl chain length of 16 intending to form vesicles. To obtain supporting information about the aggregation mechanism, the thermodynamic parameters of micellization, the free Gibbs energy ΔGmic, and the entropy ΔSmic were derived subsequently, of which the relationship between the hydrophobic chain length and the thermodynamic properties indicated that the self-assembly process was jointly driven by enthalpy and entropy. Other than traditional surfactants, the contribution of enthalpy has not increased identically to the increase in hydrophobic interactions, which depends on the ratio of the alkyl chain length to the radius in the headgroup. Continuous increases in the hydrophobic chain length from 12 to 16 lead to the intracohesion of the alkyl chain involved in the process of self-assembly, weakening the hydrophobic interactions, and the increase in -ΔHmic, which offers an explanation of the formation of vesicular structures.
Collapse
Affiliation(s)
- Pei Zhang
- †Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaohui Xu
- †Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Minghui Zhang
- †Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinben Wang
- †Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guangyue Bai
- ‡School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Haike Yan
- †Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
33
|
Chiappisi L, Gradzielski M. Co-assembly in chitosan-surfactant mixtures: thermodynamics, structures, interfacial properties and applications. Adv Colloid Interface Sci 2015; 220:92-107. [PMID: 25865361 DOI: 10.1016/j.cis.2015.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
In this review, different aspects characterizing chitosan-surfactant mixtures are summarized and compared. Chitosan is a bioderived cationic polysaccharide that finds wide-ranged applications in various field, e.g., medical or food industry, in which synergistic effects with surfactant can play a fundamental role. In particular, the behavior of chitosan interacting with strong and weak anionic, nonionic as well as cationic surfactants is reviewed. We put a focus on oppositely charged systems, as they exhibit the most interesting features. In that context, we discuss the thermodynamic description of the interaction and in particular the structural changes as they occur as a function of the mixed systems and external parameters. Moreover, peculiar properties of chitosan coated phospholipid vesicles are summarized. Finally, their co-assembly at interfaces is briefly reviewed. Despite the behavior of the mentioned systems might strongly differ, resulting in a high variety of properties, few general rules can be pointed out which improve the understanding of such complex systems.
Collapse
|
34
|
Fegyver E, Mészáros R. Complexation between Sodium Poly(styrenesulfonate) and Alkyltrimethylammonium Bromides in the Presence of Dodecyl Maltoside. J Phys Chem B 2015; 119:5336-46. [DOI: 10.1021/acs.jpcb.5b01206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edit Fegyver
- Laboratory
of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány
1/A, Hungary
| | - Róbert Mészáros
- Laboratory
of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány
1/A, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| |
Collapse
|
35
|
Kargerová A, Pekař M. High-resolution ultrasonic spectroscopy study of interactions between hyaluronan and cationic surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11866-11872. [PMID: 25247835 DOI: 10.1021/la501852a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interactions in a cationic surfactant-hyaluronan system in water and in sodium chloride solution were investigated by high-resolution ultrasonic spectroscopy at 25 °C. Two alkyltrimethylammonium bromide surfactants of different chain lengths (tetradecyl and hexadecyl) were used; hyaluronan molecular weight ranged from 10 to 1750 kDa. Two main parameters-ultrasonic velocity and attenuation-were measured in the titration regime. Up to six different regions could be identified in the velocity titration profiles in water in a narrow interval of surfactant concentration. These regions differed primarily in the compressibility of structures formed in the system. The number of detected transitions was higher for the tetradecyl surfactant; therefore, the increased length of the hydrophobic chain simplified the details of the structure-forming behavior. The measurement of attenuation was much less sensitive and detected only the formation of microheterogeneous structures or visible phase separates. The richness of the titration profiles was depressed in salt solution, where essentially only two principal regions were observed. On the other hand, the effect of hyaluronan molecular weight on the positions of boundaries between regions was more significant in the presence of salt. Besides electrostatic interactions, hydrophobic interactions are also relevant for determining the behavior of hyaluronan-surfactant systems and the properties of formed complexes (aggregates).
Collapse
Affiliation(s)
- Andrea Kargerová
- Brno University of Technology , Faculty of Chemistry, Materials Research Centre, Purkyňova 118, 612 00 Brno, Czech Republic
| | | |
Collapse
|
36
|
Uchman M, Pispas S, Kováčik L, Štěpánek M. Morphologically Tunable Coassembly of Double Hydrophilic Block Polyelectrolyte with Oppositely Charged Fluorosurfactant. Macromolecules 2014. [DOI: 10.1021/ma500622a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mariusz Uchman
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| | - Stergios Pispas
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Lubomír Kováčik
- Institute
of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| |
Collapse
|
37
|
Tang Y, Wang R, Wang Y. Constructing Gemini-Like Surfactants with Single-Chain Surfactant and Dicarboxylic Acid Sodium Salts. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1632-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Karjalainen E, Aseyev V, Tenhu H. Influence of Hydrophobic Anion on Solution Properties of PDMAEMA. Macromolecules 2014. [DOI: 10.1021/ma5000706] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erno Karjalainen
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
39
|
Li D, Wagner NJ. Universal binding behavior for ionic alkyl surfactants with oppositely charged polyelectrolytes. J Am Chem Soc 2013; 135:17547-55. [PMID: 24160889 DOI: 10.1021/ja408587u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oppositely charged polyelectrolyte-surfactant mixtures are ubiquitous in biology and the basis of numerous consumer healthcare products. Despite their broad use, however, a rational approach to their formulation remains challenging because of the complicated association mechanisms. Through compilation and analysis of literature reports and our own research, we have developed a semiempirical correlation of the binding strength of surfactants to polyelectrolytes in salt-free mixtures as a function of the polyion linear charge density and the surfactant hydrophobicity. We have found that the cooperative binding strength increases as the square of the polyelectrolyte's linear charge density and in proportion to the surfactant's hydrophobicity, such that a quantitative relationship holds across a broad range of polyelectrolytes. Deviations from the correlation reveal the role of system-specific interactions not considered in the analysis. This engineering relationship aids in the rational design of oppositely charged polyelectrolyte-surfactant formulations for consumer products and biomedicines by enabling the prediction of binding strengths in polyelectrolyte-surfactant mixtures based on mesoscale parameters determined from the chemical composition.
Collapse
Affiliation(s)
- Dongcui Li
- Center for Neutron Science, Center for Molecular and Engineering Thermodynamics, Department of Chemical & Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
40
|
Huang Y, Lapitsky Y. Determining the colloidal behavior of ionically cross-linked polyelectrolytes with isothermal titration calorimetry. J Phys Chem B 2013; 117:9548-57. [PMID: 23856000 DOI: 10.1021/jp405384b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mixtures of polyelectrolytes and multivalent counterions can self-assemble into colloidal complexes. These complexes attract widespread interest in applications such as medicine, household product formulations, and separation processes. To facilitate the development of these colloidal dispersions, we examined isothermal titration calorimetry (ITC) as an automated screening tool for identifying the polymer and multivalent counterion compositions that (1) form ionically cross-linked colloidal complexes and (2) lead to their rapid coagulation (and macroscopic phase separation). By studying various polyelectrolyte/multivalent counterion mixtures, we have identified and generalized the features in the ITC data that indicate colloidal complex formation and coagulation. The limitations of this calorimetric screening method were also elucidated. These analyses suggest that ITC can be effective for screening the short-term colloidal behavior of polyelectrolyte/multivalent counterion mixtures but are unreliable in revealing their long-term (equilibrium) properties.
Collapse
Affiliation(s)
- Yan Huang
- Department of Chemical and Environmental Engineering, University of Toledo, Toledo, Ohio 43606, USA
| | | |
Collapse
|
41
|
Han Y, Wang W, Tang Y, Zhang S, Li Z, Wang Y. Coassembly of poly(ethylene glycol)-block-poly(glutamate sodium) and gemini surfactants with different spacer lengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9316-9323. [PMID: 23834076 DOI: 10.1021/la4019713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The coassembly of poly(ethylene glycol)-b-poly(glutamate sodium) copolymer (PEG113-PGlu100) with cationic gemini surfactants alkanediyl-α,ω-bis-(dodecyldimethylammonium bromide) [C12H25(CH3)2N(CH2)SN(CH3)2C12H25]Br2 (designated as C12CSC12Br2, S = 3, 6, and 12) have been studied by isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, small-angle X-ray scattering, zeta potential, and size measurement. It has been shown that the electrostatic interaction of C12CSC12Br2 with the anionic carboxylate groups of PEG113-PGlu100 leads to complexation, and the C12CSC12Br2/PEG113-PGlu100 complexes are soluble even at the electroneutral point. The complexes display the feature of superamphiphiles and assemble into ordered nanosheets with a sandwich-like packing. The gemini molecules which were already bound with PGlu chains associate through hydrophobic interaction and constitute the middle part of the nanosheets, whereas the top and bottom of the nanosheets are hydrophilic PEG chains. The size and morphology of the nanosheets are affected by the spacer length of the gemini surfactants. The average sizes of the aggregates at the electroneutral point are 81, 68, and 90 nm for C12C3C12Br2/PEG113-PGlu100, C12C6C12Br2/PEG113-PGlu100, and C12C12C12Br2/PEG113-PGlu100, respectively. Both C12C3C12Br2/PEG113-PGlu100 and C12C12C12Br2/PEG113-PGlu100 mainly generate hexagonal nanosheets, while the C12C6C12Br2/PEG113-PGlu100 system only induces round nanosheets.
Collapse
Affiliation(s)
- Yuchun Han
- Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
42
|
Herrera I, Winnik MA. Differential binding models for isothermal titration calorimetry: moving beyond the Wiseman isotherm. J Phys Chem B 2013; 117:8659-72. [PMID: 23841823 DOI: 10.1021/jp311812a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a set of model-independent differential equations to analyze isothermal titration calorimetry (ITC) experiments. In contrast with previous approaches that begin with specific assumptions about the number of binding sites and the interactions among them (e.g., sequential, independent, cooperative), our derivation makes more general assumptions, such that a receptor with multiple sites for one type of ligand species (homotropic binding) can be studied with the same analytical expression. Our approach is based on the binding polynomial formalism, and the resulting analytical expressions can be extended to account for any number of binding sites and any type of binding interaction among them. We refer to the set of model-independent differential equations to study ITC experiments as a differential binding model (DBM). To demonstrate the flexibility of our DBM, we present the analytical expressions to study receptors with one or two binding sites. The DBM for a receptor with one site is equivalent to the Wiseman isotherm but with a more intuitive representation that depends on the binding polynomial and the dimensionless parameter c = K·MT, where K is the binding constant and MT the total receptor concentration. In addition, we show how to constrain the general DBM for a receptor with two sites to represent sequential, independent, or cooperative binding interactions between the sites. We use the sequential binding model to study the binding interaction between Gd(III) and citrate anions. In addition, we simulate calorimetry titrations of receptors with positive, negative, and noncooperative interactions between the two binding sites. Finally, we derive a DBM for titrations of receptors with n-independent binding sites.
Collapse
Affiliation(s)
- Isaac Herrera
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON Canada M5S 3H6
| | | |
Collapse
|
43
|
Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels. Carbohydr Polym 2013; 93:709-17. [DOI: 10.1016/j.carbpol.2012.12.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/24/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
|
44
|
Dhar N, Au D, Berry RC, Tam KC. Interactions of nanocrystalline cellulose with an oppositely charged surfactant in aqueous medium. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Han Y, Xia L, Zhu L, Zhang S, Li Z, Wang Y. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15134-15140. [PMID: 23057580 DOI: 10.1021/la303646r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.
Collapse
Affiliation(s)
- Yuchun Han
- Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Li D, Kelkar MS, Wagner NJ. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10348-62. [PMID: 22769434 DOI: 10.1021/la301475s] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.
Collapse
Affiliation(s)
- Dongcui Li
- Center for Molecular and Engineering Thermodynamics, Department of Chemical & Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
47
|
Franco IE, Lorchat P, Lamps JP, Schmutz M, Schröder A, Catala JM, Combet J, Schosseler F. From chain collapse to new structures: spectroscopic properties of poly(3-thiophene acetic acid) upon binding by alkyl trimethylammonium bromide surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4815-4828. [PMID: 22332777 DOI: 10.1021/la204862u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The binding of cationic surfactants with varying alkyl chain length to a regiorandom conjugated polyanion, poly(3-thiophene acetic acid) (PTAA), is studied in an aqueous buffer by using absorption and emission spectroscopies, photon correlation spectroscopy, isothermal titration calorimetry, and cryogenic transmission electron microscopy. We study the mixed solutions as a function of composition ratio R of surfactant molecules to monomer units molar concentrations, at low polymer concentration and in a very wide composition range (10(-6) < R < 10(2)) below the critical micellar concentration. Upon surfactant binding, the molecularly dispersed chains first collapse progressively and then form new structures as the mixed aggregates get enriched in surfactant. The collapse leads to a strong decrease of the conjugation length and to a blue shift of the absorption spectra by 30 to 50 nm. The new structures are responsible for a new intense emission band at about 600 nm, red-shifted by nearly 130 nm from the initial emission maximum of the polymer (~472 nm). As the surfactant tail becomes shorter, the blue shift of the absorption spectra and the intensity raise of the new emission are delayed to larger composition ratios while their variations become smoother functions of the surfactant concentration. These particular spectroscopic properties of PTAA seem related to its unique combination of a strongly hydrophobic backbone, a large ratio of contour length to persistence length, and an overall good aqueous solubility. Our results show that such features are well suited to design a colorimetric biosensor at small composition ratio, and a fluorescent biomarker at large composition ratio.
Collapse
Affiliation(s)
- I Echavarri Franco
- Institut Charles Sadron, CNRS-University of Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Solution properties and microstructure of cationic cellulose/sodium dodecyl benzene sulfonate complex system. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Fechner M, Koetz J. Polyampholyte-surfactant film tuning in reverse microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5316-5323. [PMID: 21462956 DOI: 10.1021/la200791k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pH-dependent influence of two different strongly alternating copolymers [poly(N,N'-diallyl-N,N'-dimethylammonium-alt-N-phenylmaleamic carboxylate) (PalPh) and poly(N,N'-diallyl-N,N'-dimethylammonium-alt-3,5-bis(carboxyphenyl)maleamic carboxylate) (PalPhBisCarb)] based on N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives on the phase behavior of a water-in-oil (w/o) microemulsion system made from toluene-pentanol (1:1) and sodium dodecyl sulfate was investigated. It was shown that the optically clear phase range can be extended after incorporation of these copolymers, leading to an increased water solubilization capacity. Additionally, the required amount of surfactant to establish a clear w/o microemulsion depends on the pH value, which means the hydrophobicity of the copolymers. Conductivity measurements show that droplet-droplet interactions in the w/o microemulsion are decreased at acidic but increased at alkaline pH in the presence of the copolymers. From differential scanning calorimetry measurements one can further conclude that these results are in agreement with a change of the position of the copolymer in the interfacial region of the surfactant film. The more hydrophobic PalPh can be directly incorporated into the surfactant film, whereas the phenyl groups of PalPhBisCarb flip into the water core by increasing the pH value.
Collapse
Affiliation(s)
- Mabya Fechner
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 25, 14476 Potsdam (Golm), Germany
| | | |
Collapse
|
50
|
Chandaluri CG, Patra A, Radhakrishnan TP. Polyelectrolyte-assisted formation of molecular nanoparticles exhibiting strongly enhanced fluorescence. Chemistry 2010; 16:8699-706. [PMID: 20575120 DOI: 10.1002/chem.201000502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A polyelectrolyte-assisted reprecipitation method is developed to fabricate nanoparticles of highly soluble molecules. The approach is demonstrated by using a zwitterionic diaminodicyanoquinodimethane molecule bearing remote ammonium functionalities with high solubility in water as well as organic solvents. Nanoparticles are prepared by injecting aqueous solutions of this compound containing an optimum concentration of sodium poly(styrenesulfonate) into methanol. The strong fluorescence exhibited by the compound in the aggregated state is reflected in the enhanced fluorescence of the polyelectrolyte complex in water. The nanoparticles formed in the colloidal state manifest even stronger fluorescence, which leads to an overall enhancement by about 90 times relative to aqueous solutions of the pure compound. The conditions for achieving the emission enhancement are optimized and a model for the molecular-level interactions and aggregation effects is developed through a range of spectroscopy, microscopy, and calorimetry investigations and control experiments.
Collapse
Affiliation(s)
- Ch G Chandaluri
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|