1
|
Vila JA, Arnautova YA. 13C Chemical Shifts in Proteins: A Rich Source of Encoded Structural Information. SPRINGER SERIES ON BIO- AND NEUROSYSTEMS 2019. [PMCID: PMC7123919 DOI: 10.1007/978-3-319-95843-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the formidable progress in Nuclear Magnetic Resonance (NMR) spectroscopy, quality assessment of NMR-derived structures remains as an important problem. Thus, validation of protein structures is essential for the spectroscopists, since it could enable them to detect structural flaws and potentially guide their efforts in further refinement. Moreover, availability of accurate and efficient validation tools would help molecular biologists and computational chemists to evaluate quality of available experimental structures and to select a protein model which is the most suitable for a given scientific problem. The 13Cα nuclei are ubiquitous in proteins, moreover, their shieldings are easily obtainable from NMR experiments and represent a rich source of encoded structural information that makes 13Cα chemical shifts an attractive candidate for use in computational methods aimed at determination and validation of protein structures. In this chapter, the basis of a novel methodology of computing, at the quantum chemical level of theory, the 13Cα shielding for the amino acid residues in proteins is described. We also identify and examine the main factors affecting the 13Cα-shielding computation. Finally, we illustrate how the information encoded in the 13C chemical shifts can be used for a number of applications, viz., from protein structure prediction of both α-helical and β-sheet conformations, to determination of the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH or to accurate detection of structural flaws, at a residue-level, in NMR-determined protein models.
Collapse
|
2
|
Jose KVJ, Raghavachari K. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput 2017; 13:1147-1158. [DOI: 10.1021/acs.jctc.6b00922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. V. Jovan Jose
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Shaghaghi H, Ebrahimi HP, Fathi F, Bahrami Panah N, Jalali-Heravi M, Tafazzoli M. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory. J Comput Chem 2016; 37:1296-305. [DOI: 10.1002/jcc.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/25/2015] [Accepted: 01/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania 19104
| | - Hossein Pasha Ebrahimi
- Department of Biochemistry and National Magnetic Resonance Facility at Madison; University of Wisconsin-Madison; Wisconsin
| | - Fariba Fathi
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| | | | - Mehdi Jalali-Heravi
- Department of Chemistry and Biochemistry; California State University; Los Angeles California
| | - Mohsen Tafazzoli
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| |
Collapse
|
4
|
Victora A, Möller HM, Exner TE. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Nucleic Acids Res 2014; 42:e173. [PMID: 25404135 PMCID: PMC4267612 DOI: 10.1093/nar/gku1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization.
Collapse
Affiliation(s)
- Andrea Victora
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam OT Golm, Germany
| | - Thomas E Exner
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Vila JA, Arnautova YA. 13C Chemical Shifts in Proteins: A Rich Source of Encoded Structural Information. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [PMCID: PMC7121069 DOI: 10.1007/978-3-642-28554-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the formidable progress in Nuclear Magnetic Resonance (NMR) spectroscopy, quality assessment of NMR-derived structures remains as an important problem. Thus, validation of protein structures is essential for the spectroscopists, since it could enable them to detect structural flaws and potentially guide their efforts in further refinement. Moreover, availability of accurate and efficient validation tools would help molecular biologists and computational chemists to evaluate quality of available experimental structures and to select a protein model which is the most suitable for a given scientific problem. The 13Cα nuclei are ubiquitous in proteins, moreover, their shieldings are easily obtainable from NMR experiments and represent a rich source of encoded structural information that makes 13Cα chemical shifts an attractive candidate for use in computational methods aimed at determination and validation of protein structures. In this chapter, the basis of a novel methodology of computing, at the quantum chemical level of theory, the 13Cα shielding for the amino acid residues in proteins is described. We also identify and examine the main factors affecting the 13Cα-shielding computation. Finally, we illustrate how the information encoded in the 13C chemical shifts can be used for a number of applications, viz., from protein structure prediction of both α-helical and β-sheet conformations, to determination of the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH or to accurate detection of structural flaws, at a residue-level, in NMR-determined protein models.
Collapse
|
6
|
Dračínský M, Möller HM, Exner TE. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions. J Chem Theory Comput 2013; 9:3806-15. [PMID: 26584127 DOI: 10.1021/ct400282h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and calculated data.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 166 10 Prague, Czech Republic.,Department of Chemistry, Durham University , DH1 3LE Durham, United Kingdom
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany
| | - Thomas E Exner
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany.,Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Exner TE, Frank A, Onila I, Möller HM. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 3. Conformational Sampling and Explicit Solvents Model. J Chem Theory Comput 2012; 8:4818-27. [PMID: 26605634 DOI: 10.1021/ct300701m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fragment-based quantum chemical calculations are able to accurately calculate NMR chemical shifts even for very large molecules like proteins. But even with systematic optimization of the level of theory and basis sets as well as the use of implicit solvents models, some nuclei like polar protons and nitrogens suffer from poor predictions. Two properties of the real system, strongly influencing the experimental chemical shifts but almost always neglected in the calculations, will be discussed here in great detail: (1) conformational averaging and (2) interactions with first-shell solvent molecules. Classical molecular dynamics simulations in explicit water were carried out for obtaining a representative ensemble including the arrangement of neighboring solvent molecules, which was then subjected to quantum chemical calculations. We could demonstrate with the small test system N-methyl acetamide (NMA) that the calculated chemical shifts show immense variations of up to 6 ppm and 50 ppm for protons and nitrogens, respectively, depending on the snapshot taken from a classical molecular dynamics simulation. Applying the same approach to the HA2 domain of the influenza virus glycoprotein hemagglutinin, a 32-amino-acid-long polypeptide, and comparing averaged values to the experiment, chemical shifts of nonpolar protons and carbon atoms in proteins were calculated with unprecedented accuracy. Additionally, the mean absolute error could be reduced by a factor of 2.43 for polar protons, and reasonable correlations were obtained for nitrogen and carbonyl carbon in contrast to all other studies published so far.
Collapse
Affiliation(s)
- Thomas E Exner
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.,Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Ionut Onila
- Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Heiko M Möller
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Frank A, Möller HM, Exner TE. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 2. Level of Theory, Basis Set, and Solvents Model Dependence. J Chem Theory Comput 2012; 8:1480-92. [PMID: 26596758 DOI: 10.1021/ct200913r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been demonstrated that the fragmentation scheme of our adjustable density matrix assembler (ADMA) approach for the quantum chemical calculations of very large systems is well-suited to calculate NMR chemical shifts of proteins [ Frank et al. Proteins2011, 79, 2189-2202 ]. The systematic investigation performed here on the influences of the level of theory, basis set size, inclusion or exclusion of an implicit solvent model, and the use of partial charges to describe additional parts of the macromolecule on the accuracy of NMR chemical shifts demonstrates that using a valence triple-ζ basis set leads to large improvement compared to the results given in the previous publication. Additionally, moving from the B3LYP to the mPW1PW91 density functional and including partial charges and implicit solvents gave the best results with mean absolute errors of 0.44 ppm for hydrogen atoms excluding H(N) atoms and between 1.53 and 3.44 ppm for carbon atoms depending on the size and also on the accuracy of the protein structure. Polar hydrogen and nitrogen atoms are more difficult to predict. For the first, explicit hydrogen bonds to the solvents need to be included and, for the latter, going beyond DFT to post-Hartree-Fock methods like MP2 is probably required. Even if empirical methods like SHIFTX+ show similar performance, our calculations give for the first time very reliable chemical shifts that can also be used for complexes of proteins with small-molecule ligands or DNA/RNA. Therefore, taking advantage of its ab initio nature, our approach opens new fields of application that would otherwise be largely inaccessible due to insufficient availability of data for empirical parametrization.
Collapse
Affiliation(s)
- Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany
| | - Heiko M Möller
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany
| | - Thomas E Exner
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy , Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
9
|
Abstract
The title, "Look to the past, Look to the present, and Look to the future," the motto of City College of New York, expresses how my family life and education led me to an academic career in physical chemistry and ultimately to a study of proteins. The economic depression of the 1930s left a lasting impression on my outlook and career aspirations. With fortunate experiences at several stages in my life, I was able to participate in the great adventure of the last half of the twentieth century: the revolution in biology that advanced the field of protein chemistry to so great an extent. The future is bright and limitless, with greater understanding of biology yet to come.
Collapse
Affiliation(s)
- Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
| |
Collapse
|
10
|
Frank A, Onila I, Möller HM, Exner TE. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins. Proteins 2011; 79:2189-202. [PMID: 21557322 DOI: 10.1002/prot.23041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/01/2011] [Accepted: 03/13/2011] [Indexed: 11/09/2022]
Abstract
Despite the many protein structures solved successfully by nuclear magnetic resonance (NMR) spectroscopy, quality control of NMR structures is still by far not as well established and standardized as in crystallography. Therefore, there is still the need for new, independent, and unbiased evaluation tools to identify problematic parts and in the best case also to give guidelines that how to fix them. We present here, quantum chemical calculations of NMR chemical shifts for many proteins based on our fragment-based quantum chemical method: the adjustable density matrix assembler (ADMA). These results show that (13)C chemical shifts of reasonable accuracy can be obtained that can already provide a powerful measure for the structure validation. (1)H and even more (15)N chemical shifts deviate more strongly from experiment due to the insufficient treatment of solvent effects and conformational averaging.
Collapse
Affiliation(s)
- Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz, Konstanz D-78457, Germany
| | | | | | | |
Collapse
|
11
|
Facelli JC. Chemical shift tensors: theory and application to molecular structural problems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:176-201. [PMID: 21397119 PMCID: PMC3058154 DOI: 10.1016/j.pnmrs.2010.10.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 10/14/2010] [Indexed: 05/14/2023]
Affiliation(s)
- Julio C Facelli
- Department of Biomedical Informatics, Center for High Performance Computing, University of Utah, 155 South 1452 East RM 405, Salt Lake City, UT 84112-0190, USA.
| |
Collapse
|
12
|
Prediction of protein 13Cα NMR chemical shifts using a combination scheme of statistical modeling and quantum-mechanical analysis. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wishart DS. Interpreting protein chemical shift data. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:62-87. [PMID: 21241884 DOI: 10.1016/j.pnmrs.2010.07.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/29/2010] [Indexed: 05/12/2023]
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8.
| |
Collapse
|
14
|
Vila JA, Serrano P, Wüthrich K, Scheraga HA. Sequential nearest-neighbor effects on computed 13Calpha chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2010; 48:23-30. [PMID: 20644980 PMCID: PMC2970923 DOI: 10.1007/s10858-010-9435-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/30/2010] [Indexed: 05/11/2023]
Abstract
To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of (13)C(alpha) chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue alpha/beta protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed (13)C(alpha) chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical (13)C(alpha) chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed (13)C(alpha) chemical shifts, Delta(ca,i), for the individual residues along the sequence. This indicates that the Delta(ca,i)-values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.
Collapse
Affiliation(s)
- Jorge A. Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 USA
- Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, CONICET, Ejército de Los Andes, 950-5700 San Luis Argentina
| | - Pedro Serrano
- Department of Molecular Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kurt Wüthrich
- Department of Molecular Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10,550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 USA
| |
Collapse
|
15
|
Physicochemistry of hexadecylammonium bromide and its methyl and ethanolic head group analogues in buffered aqueous and gelatin solution. J CHEM SCI 2010. [DOI: 10.1007/s12039-010-0040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Allison JR, Moll GP, van Gunsteren WF. Investigation of Stability and Disulfide Bond Shuffling of Lipid Transfer Proteins by Molecular Dynamics Simulation. Biochemistry 2010; 49:6916-27. [DOI: 10.1021/bi100383m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jane R. Allison
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology ETH, 8093 Zürich, Switzerland
| | - Gian-Peider Moll
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology ETH, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology ETH, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Barneto JL, Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC. A new model for mapping the peptide backbone: predicting proton chemical shifts in proteins. Org Biomol Chem 2010; 8:857-63. [PMID: 20135044 DOI: 10.1039/b921121g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a methodology that correlates experimental chemical shifts (at the alpha proton) of proteins with their geometrical data (both dihedral angles and distances) obtained from 13 representative proteins, which are taken from the Protein Data Bank (PDB) and the BioMagRes Data Bank (BMRB). To this end, the experimentally measured proton chemical shifts of simple amides have been correlated with DFT-based calculated structures, at the B3PW91/6-31G* level. This results in a series of mathematical relationships, which are extrapolated to the above-mentioned proteins giving rise to a modified equation for such skeleta. It is relevant to note that the equation is also supported by a clear comparison with NMR data of a protein beyond the chosen set, such as insulin, even with lower errors. The model also relates the dependence of chemical shifts on hydrophobic and anisotropic effects at the amino acid residues.
Collapse
Affiliation(s)
- José Luis Barneto
- Departamento de Química Orgánica e Inorgánica, QUOREX Research Group, Facultad de Ciencias, Universidad de Extremadura, E-06071, Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Abi-Ghanem J, Heddi B, Foloppe N, Hartmann B. DNA structures from phosphate chemical shifts. Nucleic Acids Res 2010; 38:e18. [PMID: 19942687 PMCID: PMC2817473 DOI: 10.1093/nar/gkp1061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/14/2009] [Accepted: 11/01/2009] [Indexed: 01/04/2023] Open
Abstract
For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the (31)P chemical shifts (deltaP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate deltaP into distance restraints directly exploitable in structural refinement. It even provides a new method for refining DNA oligomers with restraints exclusively inferred from deltaP. Combined with molecular dynamics in explicit solvent, these restraints lead to a structural and dynamical view of the DNA as detailed as that obtained with conventional and more extensive restraints. Tests with the Jun-Fos oligomer show that this deltaP-based strategy can provide a simple and straightforward method to capture DNA properties in solution, from routine NMR experiments on unlabeled samples.
Collapse
Affiliation(s)
- Joséphine Abi-Ghanem
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Brahim Heddi
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Nicolas Foloppe
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Brigitte Hartmann
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| |
Collapse
|
19
|
Vila JA, Scheraga HA. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts. Acc Chem Res 2009; 42:1545-53. [PMID: 19572703 PMCID: PMC3396562 DOI: 10.1021/ar900068s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two major techniques have been used to determine the three-dimensional structures of proteins: X-ray diffraction and NMR spectroscopy. In particular, the validation of NMR-derived protein structures is one of the most challenging problems in NMR spectroscopy. Therefore, researchers have proposed a plethora of methods to determine the accuracy and reliability of protein structures. Despite these proposals, there is a growing need for more sophisticated, physics-based structure validation methods. This approach will enable us to (a) characterize the "quality" of the NMR-derived ensemble as a whole by a single parameter, (b) unambiguously identify flaws in the sequence at a residue level, and (c) provide precise information, such as sets of backbone and side-chain torsional angles, that we can use to detect local flaws. Rather than reviewing all of the existing validation methods, this Account describes the contributions of our research group toward a solution of the long-standing problem of both global and local structure validation of NMR-derived protein structures. We emphasize a recently introduced physics-based methodology that makes use of observed and computed (13)C(alpha) chemical shifts (at the density functional theory (DFT) level of theory) for an accurate validation of protein structures in solution and in crystals. By assessing the ability of computed (13)C(alpha) chemical shifts to reproduce observed (13)C(alpha) chemical shifts of a single structure or ensemble of structures in solution and in crystals, we accomplish a global validation by using the conformationally averaged root-mean-square deviation, ca-rmsd, as a scoring function. In addition, the method enables us to provide local validation by identifying a set of individual amino acid conformations for which the computed and observed (13)C(alpha) chemical shifts do not agree within a certain error range and may represent a nonreliable fold of the protein model. Although it is computationally intensive, our validation method has several advantages, which we illustrate through a series of applications. This method makes use of the (13)C(alpha) chemical shifts, not shielding, that are ubiquitous to proteins and can be computed precisely from the phi, psi, and chi torsional angles. There is no need for a priori knowledge of the oligomeric state of the protein, and no knowledge-based information or additional NMR data are required. The primary limitation at this point is the computational cost of such calculations. However, we anticipate that enhancements in the speed of calculating these chemical shifts coupled with the ever-increasing computational power should soon make this a standard method accessible to the general NMR community.
Collapse
Affiliation(s)
- Jorge A. Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell
University, Ithaca NY, 14853-1301, USA
- Universidad Nacional de San Luis, IMASL-CONICET,
Ejército de Los Andes 950-5700 San Luis-Argentina
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell
University, Ithaca NY, 14853-1301, USA
| |
Collapse
|
20
|
Arnautova YA, Vila JA, Martin OA, Scheraga HA. What can we learn by computing 13Calpha chemical shifts for X-ray protein models? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:697-703. [PMID: 19564690 PMCID: PMC2703576 DOI: 10.1107/s0907444909012086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 03/31/2009] [Indexed: 11/10/2022]
Abstract
The room-temperature X-ray structures of ubiquitin (PDB code 1ubq) and of the RNA-binding domain of nonstructural protein 1 of influenza A virus (PDB code 1ail) solved at 1.8 and 1.9 A resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13Calpha chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and Rfree factors similar to those of the deposited X-ray structure, the 13Calpha chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13Calpha chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13Calpha chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13Calpha chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13Calpha chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with accuracy as good as the PDB structure. Therefore, generation of an ensemble is a necessary step to determine whether or not a single structure is sufficient for an accurate representation of both experimental X-ray data and observed 13Calpha chemical shifts in solution.
Collapse
Affiliation(s)
- Yelena A. Arnautova
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | - Jorge A. Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
- Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, CONICET, Ejército de Los Andes, 950-5700 San Luis, Argentina
| | - Osvaldo A. Martin
- Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, CONICET, Ejército de Los Andes, 950-5700 San Luis, Argentina
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| |
Collapse
|
21
|
Vila JA, Baldoni HA, Scheraga HA. Performance of density functional models to reproduce observed (13)C(alpha) chemical shifts of proteins in solution. J Comput Chem 2009; 30:884-92. [PMID: 18780343 PMCID: PMC2779021 DOI: 10.1002/jcc.21105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this work is to test several density functional models (namely, OPBE, O3LYP, OPW91, BPW91, OB98, BPBE, B971, OLYP, PBE1PBE, and B3LYP) to determine their accuracy and speed for computing (13)C(alpha) chemical shifts in proteins. The test is applied to 10 NMR-derived conformations of the 76-residue alpha/beta protein ubiquitin (protein data bank id 1D3Z). With each functional, the (13)C(alpha) shielding was computed for 760 amino acid residues by using a combination of approaches that includes, but is not limited to, treating each amino acid X in the sequence as a terminally blocked tripeptide with the sequence Ac-GXG-NMe in the conformation of the regularized experimental protein structure. As computation of the (13)C(alpha) chemical shifts, not their shielding, is the main goal of this work, a computation of the (13)C(alpha) shielding of the reference, namely, tetramethylsilane, is investigated here and an effective and a computed tetramethylsilane shielding value for each of the functionals is provided. Despite observed small differences among all functionals tested, the results indicate that four of them, namely, OPBE, OPW91, OB98, and OLYP, provide the most accurate functionals with which to reproduce observed (13)C(alpha) chemical shifts of proteins in solution, and are among the faster ones. This study also provides evidence for the applicability of these functionals to proteins of any size or class, and for the validation of our previous results and conclusions, obtained from calculations with the slower B3LYP functional.
Collapse
Affiliation(s)
- Jorge A Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
22
|
Bader R. Utilizing the charge field effect on amide (15)N chemical shifts for protein structure validation. J Phys Chem B 2009; 113:347-58. [PMID: 19118488 DOI: 10.1021/jp807362v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Of all the nuclei in proteins, the nuclear magnetic resonance (NMR) chemical shifts of nitrogen are the theoretically least well understood. In this study, quantum chemical methods are used in combination with polarizable-continuum models in order to show that consideration of the effective electric field, including charge screening due to solvation, improves considerably the consistencies of statistical relationships between experimental and computed amide (15)N shifts between various sets of charged and uncharged oligopeptides and small organic molecules. A single conversion scheme between shielding parameters from first principles using density functional theory (DFT) and experimental shifts is derived that holds for all classes of compounds examined here. This relationship is then used to test the accuracy of such (15)N chemical shift predictions in the cyclic decapeptide antibiotic gramicidin S (GS). GS has previously been studied in great detail, both by NMR and X-ray crystallography. It adopts a well-defined backbone conformation, and hence, only a few discrete side chain conformational states need to be considered. Moreover, a charge-relay effect of the two cationic ornithine side chains to the protein backbone has been described earlier by NMR spectroscopy. Here, DFT-derived backbone amide nitrogen chemical shifts were calculated for multiple conformations of GS. Overall, the structural dynamics of GS is revisited in view of chemical shift behavior along with energetic considerations. Together, the study demonstrates proof of concept that (15)N chemical shift information is particularly useful in the analysis and validation of protein conformational states in a charged environment.
Collapse
Affiliation(s)
- Reto Bader
- Department of Physics, Stockholm University, Arrhenius Laboratories, 106 91 Stockholm, Sweden.
| |
Collapse
|
23
|
Quantum chemical 13C(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation. Proc Natl Acad Sci U S A 2008; 105:14389-94. [PMID: 18787110 DOI: 10.1073/pnas.0807105105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently determined set of 20 NMR-derived conformations of a 48-residue all-alpha-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed (13)C(alpha) chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed (13)C(alpha) chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed (13)C(alpha) chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed (13)C(alpha) chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-A resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed (13)C(alpha) chemical shifts in solution than the 3BHP crystal structure. In addition, the (13)C(alpha)-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures.
Collapse
|
24
|
Vila JA, Scheraga HA. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures. Proteins 2008; 71:641-54. [PMID: 17975838 DOI: 10.1002/prot.21726] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13C(alpha) chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13C(alpha) chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13C(alpha) chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13C(alpha) chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2(xi) possible ionization states of the whole molecule, with xi being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshielding of the 13C(alpha) nucleus, indicated that: (i) there is a significant difference in the computed 13C(alpha) chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13C(alpha) nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13C(alpha) chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13C(alpha) chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13C(alpha) chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13C(alpha) chemical shifts (by up to 3.7 ppm), was found for approximately 68% and approximately 63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm < or = rmsd < or = 2.13 ppm), between computed and observed 13C(alpha) chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13C(alpha) chemical shifts and chi(1) torsional angles (given by the vicinal coupling constants, 3J(N-Cgamma) and 3J(C'-Cgamma), is discussed.
Collapse
Affiliation(s)
- Jorge A Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | |
Collapse
|
25
|
Use of 13C(alpha) chemical shifts for accurate determination of beta-sheet structures in solution. Proc Natl Acad Sci U S A 2008; 105:1891-6. [PMID: 18250334 DOI: 10.1073/pnas.0711022105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13C(alpha) chemical shifts, is applied to determine the structure of a 20-residue all-beta peptide (BS2). The approach makes use of 13C(alpha) chemical shifts, computed at the density functional level of theory, to derive backbone and side-chain torsional constraints for all of the amino acid residues, without making use of information about residue occupancy in any region of the Ramachandran map. In addition, the torsional constraints are derived dynamically--i.e., they are redefined at each step of the algorithm. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than existing NMR-derived models of the peptide, in terms of the agreement between predicted and observed 13C(beta) chemical shifts, and some stereochemical quality indicators. The accumulated evidence indicates that, for a highly flexible BS2 peptide in solution, it may not be possible to determine a single structure (or a small set of structures) that would satisfy all of the constraints exactly and simultaneously because the observed NOEs and 13C(alpha) chemical shifts correspond to a dynamic ensemble of conformations. Analysis of the structural flexibility, carried out by molecular dynamics simulations in explicit water, revealed that the whole peptide can be characterized as having liquid-like behavior, according to the Lindemann criterion. In summary, a beta-sheet structure of a highly flexible peptide in solution can be determined by a quantum-chemical-based procedure.
Collapse
|
26
|
Vila JA, Villegas ME, Baldoni HA, Scheraga HA. Predicting 13Calpha chemical shifts for validation of protein structures. JOURNAL OF BIOMOLECULAR NMR 2007; 38:221-35. [PMID: 17558470 DOI: 10.1007/s10858-007-9162-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 05/15/2023]
Abstract
The (13)C(alpha) chemical shifts for 16,299 residues from 213 conformations of four proteins (experimentally determined by X-ray crystallography and Nuclear Magnetic Resonance methods) were computed by using a combination of approaches that includes, but is not limited to, the use of density functional theory. Initially, a validation test of this methodology was carried out by a detailed examination of the correlation between computed and observed (13)C(alpha) chemical shifts of 10,564 (of the 16,299) residues from 139 conformations of the human protein ubiquitin. The results of this validation test on ubiquitin show agreement with conclusions derived from computation of the chemical shifts at the ab initio Hartree-Fock level. Further, application of this methodology to 5,735 residues from 74 conformations of the three remaining proteins that differ in their number of amino acid residues, sequence and three-dimensional structure, together with a new scoring function, namely the conformationally averaged root-mean-square-deviation, enables us to: (a) offer a criterion for an accurate assessment of the quality of NMR-derived protein conformations; (b) examine whether X-ray or NMR-solved structures are better representations of the observed (13)C(alpha) chemical shifts in solution; (c) provide evidence indicating that the proposed methodology is more accurate than automated predictors for validation of protein structures; (d) shed light as to whether the agreement between computed and observed (13)C(alpha) chemical shifts is influenced by the identity of an amino acid residue or its location in the sequence; and (e) provide evidence confirming the presence of dynamics for proteins in solution, and hence showing that an ensemble of conformations is a better representation of the structure in solution than any single conformation.
Collapse
Affiliation(s)
- Jorge A Vila
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|