1
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
2
|
Supramolecular chlorophyll aggregates inspired from specific light-harvesting antenna “chlorosome”: Static nanostructure, dynamic construction process, and versatile application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Hirose M, Teramura M, Harada J, Ogasawara S, Tamiaki H. In vitro C13 2-dealkoxycarbonylations of zinc chlorophyll a derivatives including C13 2-substitutes by a BciC enzyme. Bioorg Chem 2020; 102:104111. [PMID: 32738567 DOI: 10.1016/j.bioorg.2020.104111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023]
Abstract
Chlorosomes in the green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, e, or f molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, in vitro C132-dealkoxycarbonylations of zinc chlorophyll a derivatives bearing a methyl-, ethyl- or propyl-esterifying group and its methyl ester analogs with additional alkyl and hydroxy groups at the C132-position were examined using the BciC enzyme. The BciC-catalyzed reaction activity for the C132-methoxycarbonylated substrate was comparable to that for the ethoxycarbonylated compound; however, depropoxycarbonylation did not proceed. The BciC enzymatic demethoxycarbonylation of zinc methyl C132-alkylated pheophorbides a was gradually suppressed with the elongation of the alkyl chain and finally became inactive for the propyl substrate. The reaction of the C132-hydroxylated substrate (allomer) was accelerated compared to that of the C132-methyl analog possessing a similar steric size, and gave the corresponding C132-oxo product via further air-oxidation. All of the abovementioned enzymatic reactions occurred for one of the C132-epimers with the same configuration as in chlorophyllide a. The above substrate specificities and product distributions indicated the stereochemistry and size of the BciC enzymatic active site (pocket).
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
4
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
5
|
Shoji S, Ogawa T, Hashishin T, Tamiaki H. Self-Assemblies of Zinc Bacteriochlorophyll-d Analogues Having Amide, Ester, and Urea Groups as Substituents at 17-Position and Observation of Lamellar Supramolecular Nanostructures. Chemphyschem 2018; 19:913-920. [PMID: 29231276 DOI: 10.1002/cphc.201701044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Abstract
Chlorosomes are unique light-harvesting apparatuses in photosynthetic green bacteria. Single chlorosomes contain a large number of bacteriochlorophyll (BChl)-c, -d, -e, and -f molecules, which self-assemble without protein assistance. These BChl self-assemblies involving specific intermolecular interactions (Mg⋅⋅⋅O32 -H⋅⋅⋅O=C131 and π-π stacks of chlorin skeletons) in a chlorosome have been reported to be round-shaped rods (or tubes) with diameters of 5 or 10 nm, or lamellae with a layer spacing of approximately 2 nm. Herein, the self-assembly of synthetic zinc BChl-d analogues having ester, amide, and urea groups in the 17-substituent is reported. Spectroscopic analyses indicate that the zinc BChl-d analogues self-assemble in a nonpolar organic solvent in a similar manner to natural chlorosomal BChls with additional assistance by hydrogen-bonding of secondary amide (or urea) groups (CON-H⋅⋅⋅O=CNH). Microscopic analyses of the supramolecules of a zinc BChl-d analogue bearing amide and urea groups show round- or square-shaped rods with widths of about 65 nm. Cryogenic TEM shows a lamellar arrangement of the zinc chlorin with a layer spacing of 1.5 nm inside the rod. Similar thick rods are also visible in the micrographs of self-assemblies of zinc BChl-d analogues with one or two secondary amide moieties in the 17-substituent.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hashishin
- Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
6
|
Saga Y, Takahashi N, Miyatake T, Tamiaki H. Amphiphilic zinc bacteriochlorophyll a derivatives that function as artificial energy acceptors in photosynthetic antenna complexes chlorosomes of the green sulfur photosynthetic bacterium Chlorobaculum limnaeum. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Harada J, Shibata Y, Teramura M, Mizoguchi T, Kinoshita Y, Yamamoto K, Tamiaki H. In Vivo Energy Transfer from Bacteriochlorophyll c,d,e, orfto Bacteriochlorophyll ain Wild-Type and Mutant Cells of the Green Sulfur BacteriumChlorobaculum limnaeum. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai 980-8578 Japan
| | - Misato Teramura
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| |
Collapse
|
8
|
Saga Y, Yoshida N, Yamada S, Mizoguchi T, Tamiaki H. Biosynthesis of unnatural glycolipids possessing diyne moiety in the acyl chain in the green sulfur photosynthetic bacterium Chlorobaculum tepidum grown by supplementation of 10,12-heptadecadiynic acid. Biochem Biophys Rep 2017; 9:42-46. [PMID: 28955987 PMCID: PMC5614547 DOI: 10.1016/j.bbrep.2016.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 12/04/2022] Open
Abstract
Unnatural glycolipids possessing the diyne moiety in their acyl groups were successfully biosynthesized in the green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum by cultivation with supplementation of 10,12-heptadecadiynic acid. Monogalactosyldiacylglycerol (MGDG) and rhamnosylgalactosyldiacylglycerol (RGDG) esterified with one 10,12-heptadecadiynic acid were primarily formed in the cells, and small amounts of glycolipids esterified with the two unnatural fatty acids can also be detected. The relative ratio of these unnatural glycolipids occupied in the total glycolipids was estimated to be 49% based on HPLC analysis using a evaporative light scattering detector. These results indicate that the acyl groups in glycolipids, which play important roles in the formation of extramembranous antenna complexes called chlorosomes, can be modified in vivo by cultivation of green sulfur photosynthetic bacteria with exogenous synthetic fatty acids. Visible absorption and circular dichroism spectra of Cba. tepidum containing the unnatural glycolipids demonstrated the formation of chlorosomes, indicating that the unnatural glycolipids in this study did not interfere with the biogenesis of chlorosomes. Novel glycolipids possessing a diyne moiety in the acyl chain were biosynthesized. Supplemental fatty acids were used in the biosynthesis of glycolipids in the photosynthetic bacterium. The novel glycolipids did not inhibit the formation of photosynthetic antenna complexes.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Nozomi Yoshida
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shota Yamada
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Saga Y, Yamashita H. Effects of exogenous isoprenoid diphosphates on in vivo attachment to bacteriochlorophyllide c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. J Biosci Bioeng 2017; 124:408-413. [PMID: 28579086 DOI: 10.1016/j.jbiosc.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/22/2017] [Accepted: 05/08/2017] [Indexed: 11/18/2022]
Abstract
Metabolic substitution of the esterifying chain in bacteriochlorophyll (BChl) c in green photosynthetic bacteria grown by supplementation of exogenous alcohols has attracted attentions to study supramolecular structures and biogenesis of major antenna complexes chlorosomes in these bacteria as well as BChl pigment biosynthesis. Actual substrates in the enzymatic attachment of the esterifying moieties to the precursor of BChl c, namely bacteriochlorophyllide (BChlide) c, in these bacteria are believed to be diphosphate esters of alcoholic substrates, although only intact alcohols have so far been supplemented in the bacterial cultures. We report herein BChl c compositions in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by supplementation with geranyl and geranylgeranyl diphosphates. The supplementation of these diphosphates hardly produced BChl c derivatives esterified with geraniol and geranylgeraniol in Cba. tepidum, whereas these BChl c derivatives were accumulated by supplementation of intact geraniol and geranylgeraniol. The sharp contrast of the incorporation efficiency of the supplemental isoprenoid moieties in BChl c using the isoprenoid diphosphates to that by the isoprenoid alcohols was mainly ascribable to less penetration abilities of the diphosphate substrates into Cba. tepidum cells because of their anionic and polar diphosphate moiety.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Hayato Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
10
|
Mizoguchi T, Kinoshita Y, Harada J, Tamiaki H. Supramolecular Organogelation of Bacteriochlorophyll-c Possessing an Isobutyl Substituent at the 8-Position in Carbon Tetrachloride. Chempluschem 2017; 82:595-597. [PMID: 31961588 DOI: 10.1002/cplu.201600494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Indexed: 11/11/2022]
Abstract
The supramolecular organogelation of bacteriochlorophyll(BChl)-c carrying an isobutyl substituent at the 8-position was observed in carbon tetrachloride at a concentration of about 10 mm at room temperature. The BChl-c gel was evaluated by several spectroscopic measurements: the electronic absorption spectrum exhibited a far-red shift of the Qy-absorption from 660 to 748 nm and the FTIR spectrum showed a shorter frequency shift of the 13-C=O stretching from 1683 to 1643 cm-1 compared to the shifts of the corresponding monomer solution in tetrahydrofuran. These observations strongly indicate that the gelating BChl-c molecules form self-aggregates that are reminiscent of light-harvesting chlorosomes of green photosynthetic bacteria. The present supramolecular organogel prepared from natural chlorophylls is promising for the creation of an intelligent soft material involving artificial photosynthesis.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
11
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
12
|
Saga Y, Yamashita H, Hirota K. Introduction of perfluoroalkyl chain into the esterifying moiety of bacteriochlorophyll c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by pigment biosynthesis. Bioorg Med Chem 2016; 24:4165-4170. [PMID: 27427396 DOI: 10.1016/j.bmc.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/27/2022]
Abstract
The green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum was grown in liquid cultures containing perfluoro-1-decanol, 1H,1H,2H,2H-heptadecafluoro-1-decanol [CF3(CF2)7(CH2)2OH] or 1H,1H-nonadecafluoro-1-decanol [CF3(CF2)8CH2OH], to introduce rigid and fluorophilic chains into the esterifying moiety of light-harvesting bacteriochlorophyll (BChl) c. Exogenous 1H,1H,2H,2H-heptadecafluoro-1-decanol was successfully attached to the 17(2)-carboxy group of bacteriochlorophyllide (BChlide) c in vivo: the relative ratio of the unnatural BChl c esterified with this perfluoroalcohol over the total BChl c was 10.3%. Heat treatment of the liquid medium containing 1H,1H,2H,2H-heptadecafluoro-1-decanol with β-cyclodextrin before inoculation increased the relative ratio of the BChl c derivative esterified with this alcohol in the total BChl c in Cba. tepidum. In a while, 1H,1H-nonadecafluoro-1-decanol was not attached to BChlide c in Cba. tepidum, which was grown by its supplementation. These results suggest that the rigidity close to the hydroxy group of the esterifying alcohol is not suitable for the recognition by the BChl c synthase called BchK in Cba. tepidum. The unnatural BChl c esterified with 1H,1H,2H,2H-heptadecafluoro-1-decanol participated in BChl c self-aggregates in chlorosomes.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Hayato Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Keiya Hirota
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
13
|
Teramura M, Harada J, Mizoguchi T, Yamamoto K, Tamiaki H. In Vitro Assays of BciC Showing C132-Demethoxycarbonylase Activity Requisite for Biosynthesis of Chlorosomal Chlorophyll Pigments. PLANT & CELL PHYSIOLOGY 2016; 57:1048-1057. [PMID: 26936794 DOI: 10.1093/pcp/pcw045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
A BciC enzyme is related to the removal of the C13(2)-methoxycarbonyl group in biosynthesis of bacteriochlorophylls (BChls) c, d and e functioning in green sulfur bacteria, filamentous anoxygenic phototrophs and phototrophic acidobacteria. These photosynthetic bacteria have the largest and the most efficient light-harvesting antenna systems, called chlorosomes, containing unique self-aggregates of BChl c, d or e pigments, that lack the C13(2)-methoxycarbonyl group which disturbs chlorosomal self-aggregation. In this study, we characterized the BciC derived from the green sulfur bacterium Chlorobaculum tepidum, and examined the in vitro enzymatic activities of its recombinant protein. The BciC-catalyzing reactions of various substrates showed that the enzyme recognized chlorophyllide (Chlide) a and 3,8-divinyl(DV)-Chlide a as chlorin substrates to give 3-vinyl-bacteriochlorophyllide (3V-BChlide) d and DV-BChlide d, respectively. Since the BciC afforded a higher activity with Chlide a than that with DV-Chlide a and no activity with (DV-)protoChlides a (porphyrin substrates) and 3V-BChlide a (a bacteriochlorin substrate), this enzyme was effective for diverting the chlorosomal pigment biosynthetic pathway at the stage of Chlide a away from syntheses of other pigments such as BChl a and Chl a The addition of methanol to the reaction mixture did not prevent the BciC activity, and we identified this enzyme as Chlide a demethoxycarbonylase, not methylesterase.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
14
|
Saga Y, Hayashi K, Hirota K, Harada J, Tamiaki H. Modification of the esterifying farnesyl chain in light-harvesting bacteriochlorophylls in green sulfur photosynthetic bacteria by supplementation of 9-decyn-1-ol, 9-decen-1-ol, and decan-1-ol. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 2015; 98:1184-98. [PMID: 26331578 DOI: 10.1111/mmi.13208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Photosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3(1) position that produces a chiral center with R- or S-stereochemistry and the C3(1) -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchF-inactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Qy absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As trans- criptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
16
|
Saga Y, Hirota K, Harada J, Tamiaki H. In Vitro Enzymatic Activities of Bacteriochlorophyll a Synthase Derived from the Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Biochemistry 2015; 54:4998-5005. [PMID: 26258685 DOI: 10.1021/acs.biochem.5b00311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of an enzyme encoded by the CT1610 gene in the green sulfur photosynthetic bacterium Chlorobaculum tepidum, which was annotated as bacteriochlorophyll (BChl) a synthase, BchG (denoted as tepBchG), was examined in vitro using the lysates of Escherichia coli containing the heterologously expressed enzyme. BChl a possessing a geranylgeranyl group at the 17-propionate residue (BChl aGG) was produced from bacteriochlorophyllide (BChlide) a and geranylgeranyl pyrophosphate in the presence of tepBchG. Surprisingly, tepBchG catalyzed the formation of BChl a bearing a farnesyl group (BChl aF) as in the enzymatic production of BChl aGG, indicating loose recognition of isoprenoid pyrophosphates in tepBchG. In contrast to such loose recognition of isoprenoid substrates, BChlide c and chlorophyllide a gave no esterifying product upon being incubated with geranylgeranyl or farnesyl pyrophosphate in the presence of tepBchG. These results confirm that tepBchG undoubtedly acts as the BChl a synthase in Cba. tepidum. The enzymatic activity of tepBchG was higher than that of BchG of Rhodobacter sphaeroides at 45 °C, although the former activity was lower than the latter below 35 °C.
Collapse
Affiliation(s)
- Yoshitaka Saga
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.,‡PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiya Hirota
- †Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Jiro Harada
- §Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- ∥Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Sawaya NPD, Huh J, Fujita T, Saikin SK, Aspuru-Guzik A. Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. NANO LETTERS 2015; 15:1722-1729. [PMID: 25694170 DOI: 10.1021/nl504399d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale.
Collapse
Affiliation(s)
- Nicolas P D Sawaya
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | |
Collapse
|
18
|
Harada J, Mizoguchi T, Nomura K, Tamiaki H. Isolation and structural determination of C8-vinyl-bacteriochlorophyll d from the bciA and bchU double mutant of the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2014; 121:13-23. [PMID: 24789521 DOI: 10.1007/s11120-014-0007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (3(1) R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (3(1) R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan,
| | | | | | | |
Collapse
|
19
|
Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 2014; 105:1346-56. [PMID: 24047985 DOI: 10.1016/j.bpj.2013.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.
Collapse
|
20
|
Saga Y, Hayashi K, Mizoguchi T, Tamiaki H. Biosynthesis of bacteriochlorophyll c derivatives possessing chlorine and bromine atoms at the terminus of esterifying chains in the green sulfur bacterium Chlorobaculum tepidum. J Biosci Bioeng 2014; 118:82-7. [PMID: 24495924 DOI: 10.1016/j.jbiosc.2013.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/26/2022]
Abstract
The green sulfur photosynthetic bacterium Chlorobaculum tepidum newly produced BChl c derivatives possessing a chlorine or bromine atom at the terminus of the esterifying chain in the 17-propionate residue by cultivation with exogenous ω-halo-1-alkanols. The relative ratios of BChl c derivatives esterified with 8-chloro-1-octanol and 10-chloro-1-decanol were estimated to be 26.5% and 33.3% by cultivation with these ω-chloro-1-alkanols at the final concentrations of 300 and 150 μM, respectively. In contrast, smaller amounts of unnatural BChls c esterified with ω-bromo-1-alkanols were biosynthesized than those esterified with ω-chloro-1-alkanols: the ratios of BChl c derivatives esterified with 8-bromo-1-octanol and 10-bromo-1-decanol were 11.3% and 12.2% at the concentrations of 300 and 150 μM, respectively. These indicate that ω-chloro-1-alkanols can be incorporated into bacteriochlorophyllide c more than ω-bromo-1-alkanols in the BChl c biosynthetic pathway. The homolog compositions of the novel BChl c derivatives possessing a halogen atom were analogous to those of coexisting natural BChl c esterified with farnesol. These results demonstrate unique properties of BChl c synthase, BchK, which can utilize unnatural substrates containing halogen in the BChl c biosynthesis of Cba. tepidum.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Keisuke Hayashi
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
21
|
Miloslavina Y, Gupta KBSS, Tank M, Bryant DA, de Groot HJM. wPMLG-5 Spectroscopy of Self-Aggregated BChlein Natural Chlorosomes ofChlorobaculum Limnaeum. Isr J Chem 2014. [DOI: 10.1002/ijch.201300129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Sengupta S, Würthner F. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc Chem Res 2013; 46:2498-512. [PMID: 23865851 DOI: 10.1021/ar400017u] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the natural light-harvesting (LH) systems, those of green sulfur and nonsulfur photosynthetic bacteria are exceptional because they lack the support of a protein matrix. Instead, these so-called chlorosomes are based solely on "pigments". These are self-assembled bacteriochlorophyll c, d, and e derivatives, which consist of a chlorophyll skeleton bearing a 3(1)-hydroxy functional group. Chemists consider the latter as an essential structural unit to direct the formation of light-harvesting self-assembled dye aggregates with J-type excitonic coupling. The intriguing properties of chlorosomal J-type aggregates, particularly narrow red-shifted absorption bands, compared with monomers and their ability to delocalize and migrate excitons, have inspired intense research activities toward synthetic analogues in this field. The ultimate goal of this research field is the development of (opto-)electronic devices based on the architectural principle of chlorosomal LH systems. In this regard, the challenge is to develop small, functional building blocks with appropriate substituents that are preprogrammed to self-assemble across different length scales and to emulate functions of natural LH systems or to realize entirely new functions beyond those found in nature. In this Account, we highlight our achievements in the past decade with semisynthetic zinc chlorins (ZnChls) as model compounds of bacteriochlorophylls obtained from the naturally most abundant chlorin precursor: chlorophyll a. To begin, we explore how supramolecular strategies involving π-stacking, hydrogen bonding, and metal-oxygen coordination can be used to design ZnChl-based molecular stack, tube, and liquid crystalline assemblies conducive to charge and energy transport. Our design principle is based on the bioinspired functionalization of the 3(1)-position of ZnChl with a hydroxy or methoxy group; the former gives rise to tubular assemblies, whereas the latter induces stack assemblies. Functionalization of the 17(2)-position with esterified hydrophilic or hydrophobic chains, dendron-wedge substituents, and chromophores having complementary optical properties such as naphthalene bisimides (NBIs) is used to modulate the self-assembly of ZnChl dyes. The resulting assemblies exhibit enhanced charge transport and energy transfer abilities. We have used UV/vis, circular dichroism (CD), fluorescence spectroscopy, and dynamic light scattering (DLS) for the characterization of these assemblies in solution. In addition, we have studied assembly morphologies by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), and cryogenic-TEM. Crystallographic techniques such as powder X-ray and solid-state NMR have been used to explain the precise long- and short-range packing of dyes in these assemblies. Finally, functional properties such as charge and energy transport have been explored by pulse radiolysis time-resolved microwave conductivity (PR-TRMC), conductive AFM, and time-resolved fluorescence spectroscopy. The design principles discussed in this Account are important steps toward the utilization of these materials in biosupramolecular electronics and photonics in the future.
Collapse
Affiliation(s)
- Sanchita Sengupta
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
25
|
Adams PG, Cadby AJ, Robinson B, Tsukatani Y, Tank M, Wen J, Blankenship RE, Bryant DA, Hunter CN. Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1235-44. [PMID: 23867748 DOI: 10.1016/j.bbabio.2013.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
Chlorosomes, the major antenna complexes in green sulphur bacteria, filamentous anoxygenic phototrophs, and phototrophic acidobacteria, are attached to the cytoplasmic side of the inner cell membrane and contain thousands of bacteriochlorophyll (BChl) molecules that harvest light and channel the energy to membrane-bound reaction centres. Chlorosomes from phototrophs representing three different phyla, Chloroflexus (Cfx.) aurantiacus, Chlorobaculum (Cba.) tepidum and the newly discovered "Candidatus (Ca.) Chloracidobacterium (Cab.) thermophilum" were analysed using PeakForce Tapping atomic force microscopy (PFT-AFM). Gentle PFT-AFM imaging in buffered solutions that maintained the chlorosomes in a near-native state revealed ellipsoids of variable size, with surface bumps and undulations that differ between individual chlorosomes. Cba. tepidum chlorosomes were the largest (133×57×36nm; 141,000nm(3) volume), compared with chlorosomes from Cfx. aurantiacus (120×44×30nm; 84,000nm(3)) and Ca. Cab. thermophilum (99×40×31nm; 65,000nm(3)). Reflecting the contributions of thousands of pigment-pigment stacking interactions to the stability of these supramolecular assemblies, analysis by nanomechanical mapping shows that chlorosomes are highly stable and that their integrity is disrupted only by very strong forces of 1000-2000pN. AFM topographs of Ca. Cab. thermophilum chlorosomes that had retained their attachment to the cytoplasmic membrane showed that this membrane dynamically changes shape and is composed of protrusions of up to 30nm wide and 6nm above the mica support, possibly representing different protein domains. Spectral imaging revealed significant heterogeneity in the fluorescence emission of individual chlorosomes, likely reflecting the variations in BChl c homolog composition and internal arrangements of the stacked BChls within each chlorosome.
Collapse
Affiliation(s)
- Peter G Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems. Bioorg Med Chem 2013; 21:3689-94. [DOI: 10.1016/j.bmc.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
|
27
|
Abstract
Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.
Collapse
|
28
|
Shoji S, Hashishin T, Tamiaki H. Construction of Chlorosomal Rod Self-Aggregates in the Solid State on Any Substrates from Synthetic Chlorophyll Derivatives Possessing an Oligomethylene Chain at the 17-Propionate Residue. Chemistry 2012; 18:13331-41. [DOI: 10.1002/chem.201201935] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/09/2022]
|
29
|
A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2012; 2:671. [PMID: 22993696 PMCID: PMC3445912 DOI: 10.1038/srep00671] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/03/2012] [Indexed: 11/21/2022] Open
Abstract
The discovery of new chlorophyllous pigments would provide greater understanding of the mechanisms and evolution of photosynthesis. Bacteriochlorophyll f has never been observed in nature, although this name was proposed ~40 years ago based on structurally related compounds. We constructed a bacteriochlorophyll f–accumulating mutant of the green sulfur bacterium Chlorobaculum limnaeum, which originally produced bacteriochlorophyll e, by knocking out the bchU gene encoding C-20 methyltransferase based on natural transformation. This novel pigment self-aggregates in an in vivo light-harvesting antenna, the chlorosome, and exhibits a Qy peak of 705 nm, more blue-shifted than any other chlorosome reported so far; the peak overlaps the maximum (~700 nm) of the solar photon flux spectrum. Bacteriochlorophyll f chlorosomes can transfer light energy from core aggregated pigments to another bacteriochlorophyll in the chlorosomal envelope across an energy gap of ~100 nm, and is thus a promising material for development of new bioenergy applications.
Collapse
|
30
|
Sasaki SI, Mizutani K, Kunieda M, Tamiaki H. Construction of chlorophyll assemblies based on zinc complexes of triazole–chlorin conjugates. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Gomez Maqueo Chew A, Buda F, Bryant DA, Holzwarth AR, de Groot HJM. Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. Biochemistry 2012; 51:4488-98. [PMID: 22577986 DOI: 10.1021/bi201817x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.
Collapse
Affiliation(s)
- Swapna Ganapathy
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kühl M, Ward DM, Bryant DA. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME JOURNAL 2012; 6:1869-82. [PMID: 22456447 DOI: 10.1038/ismej.2012.24] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An uncultured member of the phylum Chlorobi, provisionally named 'Candidatus Thermochlorobacter aerophilum', occurs in the microbial mats of alkaline siliceous hot springs at the Yellowstone National Park. 'Ca. T. aerophilum' was investigated through metagenomic and metatranscriptomic approaches. 'Ca. T. aerophilum' is a member of a novel, family-level lineage of Chlorobi, a chlorophototroph that synthesizes type-1 reaction centers and chlorosomes similar to cultivated relatives among the green sulfur bacteria, but is otherwise very different physiologically. 'Ca. T. aerophilum' is proposed to be an aerobic photoheterotroph that cannot oxidize sulfur compounds, cannot fix N(2), and does not fix CO(2) autotrophically. Metagenomic analyses suggest that 'Ca. T. aerophilum' depends on other mat organisms for fixed carbon and nitrogen, several amino acids, and other important nutrients. The failure to detect bchU suggests that 'Ca. T. aerophilum' synthesizes bacteriochlorophyll (BChl) d, and thus it occupies a different ecological niche than other chlorosome-containing chlorophototrophs in the mat. Transcription profiling throughout a diel cycle revealed distinctive gene expression patterns. Although 'Ca. T. aerophilum' probably photoassimilates organic carbon sources and synthesizes most of its cell materials during the day, it mainly transcribes genes for BChl synthesis during late afternoon and early morning, and it synthesizes and assembles its photosynthetic apparatus during the night.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nishimori R, Mizoguchi T, Tamiaki H, Kashimura S, Saga Y. Biosynthesis of Unnatural Bacteriochlorophyll c Derivatives Esterified with α,ω-Diols in the Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Biochemistry 2011; 50:7756-64. [DOI: 10.1021/bi200994h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Risato Nishimori
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mizoguchi
- Department of Bioscience and
Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and
Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigenori Kashimura
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
34
|
Mizoguchi T, Yoshitomi T, Harada J, Tamiaki H. Temperature- and Time-Dependent Changes in the Structure and Composition of Glycolipids during the Growth of the Green Sulfur Photosynthetic Bacterium Chlorobaculum tepidum. Biochemistry 2011; 50:4504-12. [DOI: 10.1021/bi2002339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tadashi Mizoguchi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Taichi Yoshitomi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
35
|
Sengupta S, Uemura S, Patwardhan S, Huber V, Grozema FC, Siebbeles LDA, Baumeister U, Würthner F. Columnar Mesophases Based on Zinc Chlorophyll Derivatives Functionalized with Peripheral Dendron Wedges. Chemistry 2011; 17:5300-10. [DOI: 10.1002/chem.201002659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Sanchita Sengupta
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Shinobu Uemura
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Sameer Patwardhan
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Valerie Huber
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Ferdinand C. Grozema
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Laurens D. A. Siebbeles
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Ute Baumeister
- Martin‐Luther‐Universität Halle‐Wittenberg, Institut für Chemie, Physikalische Chemie, von‐Danckelmann‐Platz 4, 06120 Halle (Germany)
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| |
Collapse
|
36
|
Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Shibata Y, Tateishi S, Nakabayashi S, Itoh S, Tamiaki H. Intensity Borrowing via Excitonic Couplings among Soret and Qy Transitions of Bacteriochlorophylls in the Pigment Aggregates of Chlorosomes, the Light-Harvesting Antennae of Green Sulfur Bacteria. Biochemistry 2010; 49:7504-15. [DOI: 10.1021/bi100607c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shingo Tateishi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shosuke Nakabayashi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
38
|
Spectral properties of single light-harvesting complexes in bacterial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.02.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kunieda M, Yamamoto K, Tamiaki H. Self-aggregation of synthetic multi-hydroxylated zinc chlorophylls. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Linearly polarized light absorption spectra of chlorosomes, light-harvesting antennas of photosynthetic green sulfur bacteria. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2009.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 2009; 191:7109-20. [PMID: 19749040 DOI: 10.1128/jb.00707-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chlorosome envelope of Chlorobaculum tepidum contains 10 proteins that belong to four structural motif families. A previous mutational study (N.-U. Frigaard, H. Li, K. J. Milks, and D. A. Bryant, J. Bacteriol. 186:646-653, 2004) suggested that some of these proteins might have redundant functions. Six multilocus mutants were constructed to test the effects of eliminating the proteins of the CsmC/CsmD and CsmB/CsmF motif families, and the resulting strains were characterized physiologically and biochemically. Mutants lacking all proteins of either motif family still assembled functional chlorosomes, and as measured by growth rates of the mutant strains, light harvesting was affected only at the lowest light intensities tested (9 and 32 micromol photons m(-2) s(-1)). The size, composition, and biogenesis of the mutant chlorosomes differed from those of wild-type chlorosomes. Mutants lacking proteins of the CsmC/CsmD motif family produced smaller chlorosomes than did the wild type, and the Q(y) absorbance maximum for the bacteriochlorophyll c aggregates in these chlorosomes was strongly blueshifted. Conversely, the chlorosomes of mutants lacking proteins of the CsmB/CsmF motif family were larger than wild-type chlorosomes, and the Q(y) absorption for their bacteriochlorophyll c aggregates was redshifted. When CsmH was eliminated in addition to other proteins of either motif family, chlorosomes had smaller diameters. These data show that the chlorosome envelope proteins of the CsmB/CsmF and CsmC/CsmD families play important roles in determining chlorosome size as well as the assembly and supramolecular organization of the bacteriochlorophyll c aggregates within the chlorosome.
Collapse
|
42
|
Synthesis of galactosylated zinc bacteriochlorophyll-d analogs and their self-aggregation in an aqueous methanol solution. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2009.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material. Proc Natl Acad Sci U S A 2009; 106:11472-7. [PMID: 19587237 DOI: 10.1073/pnas.0811872106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We introduce a concept to solve the structure of a microcrystalline material in the solid-state at natural abundance without access to distance constraints, using magic angle spinning (MAS) NMR spectroscopy in conjunction with X-ray powder diffraction and DFT calculations. The method is applied to a novel class of materials that form (semi)conductive 1D wires for supramolecular electronics and artificial light-harvesting. The zinc chlorins 3-devinyl-3(1)-hydroxymethyl-13(2)-demethoxycarbonylpheophorbide a (3',5'-bis-dodecyloxy)benzyl ester zinc complex 1 and 3-devinyl-3(1)-methoxymethyl-13(2)-demethoxycarbonylpheophorbide a (3',5'-bis-dodecyloxy)benzyl ester zinc complex 2, self-assemble into extended excitonically coupled chromophore stacks. (1)H-(13)C heteronuclear dipolar correlation MAS NMR experiments provided the (1)H resonance assignment of the chlorin rings that allowed accurate probing of ring currents related to the stacking of macrocycles. DFT ring-current shift calculations revealed that both chlorins self-assemble in antiparallel pi-stacks in planar layers in the solid-state. Concomitantly, X-ray powder diffraction measurements for chlorin 2 at 80 degrees C revealed a 3D lattice for the mesoscale packing that matches molecular mechanics optimized aggregate models. For chlorin 2 the stacks alternate with a periodicity of 0.68 nm and a 3D unit cell with an approximate volume of 6.28 nm(3) containing 4 molecules, which is consistent with space group P2(1)22(1).
Collapse
|
44
|
Sridharan A, Muthuswamy J, Pizziconi VB. Optoelectronic energy transfer at novel biohybrid interfaces using light harvesting complexes from Chloroflexus aurantiacus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6508-6516. [PMID: 19405485 DOI: 10.1021/la900112p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In nature, nanoscale supramolecular light harvesting complexes initiate the photosynthetic energy collection process at high quantum efficiencies. In this study, the distinctive antenna structure from Chloroflexus aurantiacusthe chlorosomeis assessed for potential exploitation in novel biohybrid optoelectronic devices. Electrochemical characterization of bacterial fragments containing intact chlorosomes with the photosynthetic apparatus show an increase in the charge storage density near the working electrode upon light stimulation and suggest that chlorosomes contribute approximately one-third of the overall photocurrent. Further, isolated chlorosomes (without additional photosynthetic components, e.g., reaction centers, biochemical mediators) produce a photocurrent (approximately 8-10 nA) under light saturation conditions. Correlative experiments indicate that the main chlorosome pigment, bacteriochlorophyll-c, contributes to the photocurrent via an oxidative mechanism. The results reported herein are the first to demonstrate that isolated chlorosomes (lipid-enclosed sacs of pigments) directly transduce light energy in an electrochemical manner, laying an alternative, biomimetic approach for designing photosensitized interfaces in biofuel cells and biomedical devices, such as bioenhanced retinal prosthetics.
Collapse
Affiliation(s)
- Arati Sridharan
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
45
|
Tamiaki H, Kotegawa Y, Nitta SI, Sasaki SI, Mizutani K. Synthesis of 32-substituted bacteriochlorophyll-d analogs and their self-aggregation in a nonpolar organic solvent. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Tamiaki H, Michitsuji T, Shibata R. Synthesis of zinc bacteriochlorophyll-d analogues with various 17-substituents and their chlorosomal self-aggregates in non-polar organic solvents. Photochem Photobiol Sci 2008; 7:1225-30. [DOI: 10.1039/b802359j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|