1
|
Zhong K, Nguyen HL, Do TN, Tan HS, Knoester J, Jansen TLC. Coarse-Grained Approach to Simulate Signatures of Excitation Energy Transfer in Two-Dimensional Electronic Spectroscopy of Large Molecular Systems. J Chem Theory Comput 2024; 20:6111-6124. [PMID: 38996082 PMCID: PMC11270824 DOI: 10.1021/acs.jctc.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) has proven to be a highly effective technique in studying the properties of excited states and the process of excitation energy transfer in complex molecular assemblies, particularly in biological light-harvesting systems. However, the accurate simulation of 2DES for large systems still poses a challenge because of the heavy computational demands it entails. In an effort to overcome this limitation, we devised a coarse-grained 2DES method. This method encompasses the treatment of the entire system by dividing it into distinct weakly coupled segments, which are assumed to communicate predominantly through incoherent exciton transfer. We first demonstrate the efficiency of this method through simulation on a model dimer system, which demonstrates a marked improvement in calculation efficiency, with results that exhibit good concordance with reference spectra calculated with less approximate methods. Additionally, the application of this method to the light-harvesting antenna 2 (LH2) complex of purple bacteria showcases its advantages, accuracy, and limitations. Furthermore, simulating the anisotropy decay in LH2 induced by energy transfer and its comparison with experiments confirm that the method is capable of accurately describing dynamical processes in a biologically relevant system. This method presented lends itself to an extension that accounts for the effect of intrasegment relaxation processes on the 2DES spectra, which for computational efficiency are ignored in the implementation reported here. It is envisioned that the method will be employed in the future to accurately and efficiently calculate 2D spectra of more extensive systems, such as photosynthetic supercomplexes.
Collapse
Affiliation(s)
- Kai Zhong
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Hoang Long Nguyen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Thanh Nhut Do
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Howe-Siang Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- Faculty
of Science, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Green D, Bressan G, Heisler IA, Meech SR, Jones GA. Vibrational coherences in half-broadband 2D electronic spectroscopy: Spectral filtering to identify excited state displacements. J Chem Phys 2024; 160:234104. [PMID: 38884412 DOI: 10.1063/5.0214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
Collapse
Affiliation(s)
- Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Atsango AO, Montoya-Castillo A, Markland TE. An accurate and efficient Ehrenfest dynamics approach for calculating linear and nonlinear electronic spectra. J Chem Phys 2023; 158:074107. [PMID: 36813724 DOI: 10.1063/5.0138671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we introduce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively capture the exact linear, 2D electronic spectroscopy, and pump-probe spectra for a Frenkel exciton model in slow bath regimes and is even able to reproduce the main spectral features in fast bath regimes.
Collapse
Affiliation(s)
- Austin O Atsango
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Takahashi H, Tanimura Y. Discretized hierarchical equations of motion in mixed Liouville-Wigner space for two-dimensional vibrational spectroscopies of liquid water. J Chem Phys 2023; 158:044115. [PMID: 36725520 DOI: 10.1063/5.0135725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A model of a bulk water system describing the vibrational motion of intramolecular and intermolecular modes is constructed, enabling analysis of its linear and nonlinear vibrational spectra as well as the energy transfer processes between the vibrational modes. The model is described as a system of four interacting anharmonic oscillators nonlinearly coupled to their respective heat baths. To perform a rigorous numerical investigation of the non-Markovian and nonperturbative quantum dissipative dynamics of the model, we derive discretized hierarchical equations of motion in mixed Liouville-Wigner space, with Lagrange-Hermite mesh discretization being employed in the Liouville space of the intramolecular modes and Lagrange-Hermite mesh discretization and Hermite discretization in the Wigner space of the intermolecular modes. One-dimensional infrared and Raman spectra and two-dimensional terahertz-infrared-visible and infrared-infrared-Raman spectra are computed as demonstrations of the quantum dissipative description provided by our model.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Abstract
Numerous linear and non-linear spectroscopic techniques have been developed to elucidate structural and functional information of complex systems ranging from natural systems, such as proteins and light-harvesting systems, to synthetic systems, such as solar cell materials and light-emitting diodes. The obtained experimental data can be challenging to interpret due to the complexity and potential overlapping spectral signatures. Therefore, computational spectroscopy plays a crucial role in the interpretation and understanding of spectral observables of complex systems. Computational modeling of various spectroscopic techniques has seen significant developments in the past decade, when it comes to the systems that can be addressed, the size and complexity of the sample types, the accuracy of the methods, and the spectroscopic techniques that can be addressed. In this Perspective, I will review the computational spectroscopy methods that have been developed and applied for infrared and visible spectroscopies in the condensed phase. I will discuss some of the questions that this has allowed answering. Finally, I will discuss current and future challenges and how these may be addressed.
Collapse
Affiliation(s)
- Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Du M, Qin M, Cui H, Wang C, Xu Y, Ma X, Yi X. Role of Spatially Correlated Fluctuations in Photosynthetic Excitation Energy Transfer with an Equilibrium and a Nonequilibrium Initial Bath. J Phys Chem B 2021; 125:6417-6430. [PMID: 34105973 DOI: 10.1021/acs.jpcb.1c02041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of excitation energy in photosynthetic light-harvesting complexes has inspired growing interest for its scientific and engineering significance. Recent experimental findings have suggested that spatially correlated environmental fluctuations may account for the existence of long-lived quantum coherent energy transfer observed even at physiological temperature. In this paper, we investigate the effects of spatial correlations on the excitation energy transfer dynamics by including a nonequilibrium initial bath in a simulated donor-acceptor model. The initial bath state, which is assumed to be either equilibrium or nonequilibrium, is expanded in powers of coupling strength within the polaron formalism of a quantum master equation. The spatial correlations of bath fluctuations strongly influence the decay of coherence in the dynamics. The role of a nonequilibrium initial bath is also influenced by spatial correlations and becomes the most conspicuous for certain degrees of spatial correlations from which we propose a picture that the spatial correlations of bath fluctuations open up new energy transfer pathways, playing a role of protecting coherence. Besides, we apply the polaron master equation approach to study the dynamics in a two-site subsystem of the FMO complex and provide a practical example that shows the versatility of this approach.
Collapse
Affiliation(s)
- Min Du
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Ming Qin
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Haitao Cui
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Chunyang Wang
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Yuqing Xu
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaoguang Ma
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xuexi Yi
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Qin X, Hirata S. Anharmonic Phonon Dispersion in Polyethylene. J Phys Chem B 2020; 124:10477-10485. [PMID: 33169996 DOI: 10.1021/acs.jpcb.0c08493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The second-order Green's function method for anharmonic crystals has been applied to an infinite, periodic chain of polyethylene taking into account up to quartic force constants. The frequency-independent approximation to the Dyson self-energy gives rise to numerous divergent resonances, which are fortuitous. Instead, solving the Dyson equation self-consistently with a frequency-dependent self-energy resists divergences from resonances or zero-frequency acoustic vibrations. The calculated anharmonic phonon dispersion, which nonetheless displays many true resonances, and anharmonic phonon density of states furnish hitherto unknown details that explain smaller features of observed vibrational spectra.
Collapse
Affiliation(s)
- Xiuyi Qin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Ikeda T, Scholes GD. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. J Chem Phys 2020; 152:204101. [DOI: 10.1063/5.0007327] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsushi Ikeda
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
9
|
Ueno S, Tanimura Y. Modeling Intermolecular and Intramolecular Modes of Liquid Water Using Multiple Heat Baths: Machine Learning Approach. J Chem Theory Comput 2020; 16:2099-2108. [DOI: 10.1021/acs.jctc.9b01288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seiji Ueno
- HPC Systems Inc., Nakagyoku, Kyoto 604, Japan
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
10
|
Green D, Humphries BS, Dijkstra AG, Jones GA. Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape. J Chem Phys 2019; 151:174112. [DOI: 10.1063/1.5119300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dale Green
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ben S. Humphries
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Garth A. Jones
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Ikeda T, Dijkstra AG, Tanimura Y. Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra. J Chem Phys 2019; 150:114103. [DOI: 10.1063/1.5086948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsushi Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Jansen TLC, Saito S, Jeon J, Cho M. Theory of coherent two-dimensional vibrational spectroscopy. J Chem Phys 2019; 150:100901. [DOI: 10.1063/1.5083966] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas la Cour Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
13
|
Bircher MP, Liberatore E, Browning NJ, Brickel S, Hofmann C, Patoz A, Unke OT, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner HJ, Vaníček J, Rothlisberger U. Nonadiabatic effects in electronic and nuclear dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061510. [PMID: 29376108 PMCID: PMC5760266 DOI: 10.1063/1.4996816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Collapse
Affiliation(s)
- Martin P Bircher
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicholas J Browning
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Aurélien Patoz
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Oliver T Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zürich, Switzerland
| | - Ursula Keller
- Physics Department, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Hans-Jakob Woerner
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
15
|
Liang XT. Long-Lived Coherence Originating from Electronic-Vibrational Couplings in Light-Harvesting Complexes. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1609188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
|
17
|
Ding JJ, Zhang HD, Wang Y, Xu RX, Zheng X, Yan Y. Minimum-exponents ansatz for molecular dynamics and quantum dissipation. J Chem Phys 2016; 145:204110. [DOI: 10.1063/1.4967964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jin-Jin Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Richter M, Fingerhut BP. Simulation of Multi-Dimensional Signals in the Optical Domain: Quantum-Classical Feedback in Nonlinear Exciton Propagation. J Chem Theory Comput 2016; 12:3284-94. [PMID: 27248511 DOI: 10.1021/acs.jctc.6b00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an algorithm for the simulation of nonlinear 2D spectra of molecular systems in the UV-vis spectral region from atomistic molecular dynamics trajectories subject to nonadiabatic relaxation. We combine the nonlinear exciton propagation (NEP) protocol, that relies on a quasiparticle approach with the surface hopping methodology to account for quantum-classical feedback during the dynamics. Phenomena, such as dynamic Stokes shift due to nuclear relaxation, spectral diffusion, and population transfer among electronic states, are thus naturally included and benchmarked on a model of two electronic states coupled to a harmonic coordinate and a classical heatbath. The capabilities of the algorithm are further demonstrated for the bichromophore diphenylmethane that is described in a fully microscopic fashion including all 69 classical nuclear degrees of freedom. We demonstrate that simulated 2D signals are especially sensitive to the applied theoretical approximations (i.e., choice of active space in the CASSCF method) where population dynamics appears comparable.
Collapse
Affiliation(s)
- Martin Richter
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| |
Collapse
|
19
|
Ye L, Wang X, Hou D, Xu RX, Zheng X, Yan Y. HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1269] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Xiaoli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Dong Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics; University of Science and Technology of China; Hefei China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials); University of Science and Technology of China; Hefei China
| |
Collapse
|
20
|
Monahan DM, Whaley-Mayda L, Ishizaki A, Fleming GR. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes. J Chem Phys 2016; 143:065101. [PMID: 26277167 DOI: 10.1063/1.4928068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the "site-probe response." By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Collapse
Affiliation(s)
- Daniele M Monahan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Lukas Whaley-Mayda
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Ito H, Tanimura Y. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water. J Chem Phys 2016; 144:074201. [DOI: 10.1063/1.4941842] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hironobu Ito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Liang XT. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral. J Chem Phys 2015; 141:044116. [PMID: 25084890 DOI: 10.1063/1.4890533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
Collapse
Affiliation(s)
- Xian-Ting Liang
- Department of Physics and Institute of Optics, Ningbo University, Ningbo 315211, China
| |
Collapse
|
23
|
Lewis NHC, Dong H, Oliver TAA, Fleming GR. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy. J Chem Phys 2015; 143:124203. [DOI: 10.1063/1.4931634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Nicholas H. C. Lewis
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Hui Dong
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Thomas A. A. Oliver
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Ikeda T, Ito H, Tanimura Y. Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions. J Chem Phys 2015; 142:212421. [DOI: 10.1063/1.4917033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsushi Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hironobu Ito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci Rep 2015; 5:8444. [PMID: 25676589 PMCID: PMC4649631 DOI: 10.1038/srep08444] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/20/2015] [Indexed: 12/20/2022] Open
Abstract
We derive an easily computable quantum speed limit (QSL) time bound for open systems whose initial states can be chosen as either pure or mixed states. Moreover, this QSL time is applicable to either Markovian or non-Markovian dynamics. By using of a hierarchy equation method, we numerically study the QSL time bound in a qubit system interacting with a single broadened cavity mode without rotating-wave, Born and Markovian approximation. By comparing with rotating-wave approximation (RWA) results, we show that the counter-rotating terms are helpful to increase evolution speed. The problem of non-Markovianity is also considered. We find that for non-RWA cases, increasing system-bath coupling can not always enhance the non-Markovianity, which is qualitatively different from the results with RWA. When considering the relation between QSL and non-Markovianity, we find that for small broadening widths of the cavity mode, non-Markovianity can increase the evolution speed in either RWA or non-RWA cases, while, for larger broadening widths, it is not true for non-RWA cases.
Collapse
|
26
|
Ito H, Hasegawa T, Tanimura Y. Calculating two-dimensional THz-Raman-THz and Raman-THz-THz signals for various molecular liquids: The samplers. J Chem Phys 2014; 141:124503. [PMID: 25273447 DOI: 10.1063/1.4895908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hironobu Ito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Taisuke Hasegawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
- Department of Physics, University of Hamburg, Centre for Free Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Tanimura Y. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. J Chem Phys 2014; 141:044114. [DOI: 10.1063/1.4890441] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Mineo H, Lin SH, Fujimura Y, Xu J, Xu RX, Yan YJ. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase. J Chem Phys 2013; 139:214306. [DOI: 10.1063/1.4834035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Gelin MF, Tanimura Y, Domcke W. Simulation of femtosecond “double-slit” experiments for a chromophore in a dissipative environment. J Chem Phys 2013; 139:214302. [DOI: 10.1063/1.4832876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
30
|
Tempelaar R, van der Vegte CP, Knoester J, Jansen TLC. Surface hopping modeling of two-dimensional spectra. J Chem Phys 2013; 138:164106. [DOI: 10.1063/1.4801519] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
van der Vegte CP, Dijkstra AG, Knoester J, Jansen TLC. Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method. J Phys Chem A 2013; 117:5970-80. [DOI: 10.1021/jp311668r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. P. van der Vegte
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - A. G. Dijkstra
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - J. Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - T. L. C. Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
32
|
Tanimura Y. Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy. J Chem Phys 2012; 137:22A550. [DOI: 10.1063/1.4766931] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Zhu L, Liu H, Xie W, Shi Q. Explicit system-bath correlation calculated using the hierarchical equations of motion method. J Chem Phys 2012. [DOI: 10.1063/1.4766358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
34
|
Popescu B, Woiczikowski PB, Elstner M, Kleinekathöfer U. Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges. PHYSICAL REVIEW LETTERS 2012; 109:176802. [PMID: 23215213 DOI: 10.1103/physrevlett.109.176802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 06/01/2023]
Abstract
Molecules in junctions often fluctuate considerably, especially when subject to the influence of solvent molecules. These fluctuations in site energies and couplings can be sampled, for example, by using molecular dynamics simulations, and can lead to incoherent effects in charge transport. To this end, a popular snapshot-averaged Landauer approach is compared to a time-dependent Green's function scheme. Since sequential transport dominates in systems with rapidly varying bridges, schemes not taking the time order of conformations into account, such as the Landauer approach, are inappropriate.
Collapse
Affiliation(s)
- Bogdan Popescu
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
35
|
Ding JJ, Xu RX, Yan Y. Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms. J Chem Phys 2012; 136:224103. [PMID: 22713032 DOI: 10.1063/1.4724193] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an optimized hierarchical equations of motion theory for quantum dissipation in multiple Brownian oscillators bath environment, followed by a mechanistic study on a model donor-bridge-acceptor system. We show that the optimal hierarchy construction, via the memory-frequency decomposition for any specified Brownian oscillators bath, is generally achievable through a universal pre-screening search. The algorithm goes by identifying the candidates for the best be just some selected Padé spectrum decomposition based schemes, together with a priori accuracy control criterions on the sole approximation, the white-noise residue ansatz, involved in the hierarchical construction. Beside the universal screening search, we also analytically identify the best for the case of Drude dissipation and that for the Brownian oscillators environment without strongly underdamped bath vibrations. For the mechanistic study, we quantify the quantum nature of bath influence and further address the issue of localization versus delocalization. Proposed are a reduced system entropy measure and a state-resolved constructive versus destructive interference measure. Their performances on quantifying the correlated system-environment coherence are exemplified in conjunction with the optimized hierarchical equations of motion evaluation of the model system dynamics, at some representing bath parameters and temperatures. Analysis also reveals the localization to delocalization transition as temperature decreases.
Collapse
Affiliation(s)
- Jin-Jin Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | |
Collapse
|
36
|
Strümpfer J, Schulten K. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers. J Chem Theory Comput 2012; 8:2808-2816. [PMID: 23105920 PMCID: PMC3480185 DOI: 10.1021/ct3003833] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.
Collapse
Affiliation(s)
- Johan Strümpfer
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
37
|
Liang C, Jansen TLC. An Efficient N(3)-Scaling Propagation Scheme for Simulating Two-Dimensional Infrared and Visible Spectra. J Chem Theory Comput 2012; 8:1706-13. [PMID: 26593664 DOI: 10.1021/ct300045c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper, we develop and test a new approximate propagation scheme for calculating two-dimensional infrared and visible spectra. The new scheme scales one order more efficiently with the system size than the existing schemes. A Trotter type of approximation is used for the matrix exponent that describes the time evolution of the quantum system. This is needed for calculating the third-order response functions governing the two-dimensional infrared and visible spectra. The method is tested on a model dimer system, the amide I spectrum of the Gramicidin A antimicrobial peptide, the spectrum of the OH stretching vibration of bulk water, and a homogeneous J-aggregate. Errors due to the approximation are hardly observable in the calculated spectra. Scaling simulations with different system sizes are used to demonstrate that the new scheme is indeed scaling with the system size to the third power, one order faster than the existing methods.
Collapse
Affiliation(s)
- Chungwen Liang
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
38
|
Huo P, Coker DF. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. J Chem Phys 2012; 136:115102. [DOI: 10.1063/1.3693019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Gelin MF, Sharp LZ, Egorova D, Domcke W. Bath-induced correlations and relaxation of vibronic dimers. J Chem Phys 2012; 136:034507. [DOI: 10.1063/1.3676063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Torii H, Giorgini MG, Musso M. Merged- and Separate-Band Behavior of the C═O Stretching Band in N,N-Dimethylformamide Isotopic Liquid Mixtures: DMF/DMF-d1, DMF/DMF-d6, and DMF/DMF-13C═O. J Phys Chem B 2011; 116:353-66. [DOI: 10.1021/jp209119e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Maria Grazia Giorgini
- Dipartimento di Chimica Fisica ed Inorganica, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Maurizio Musso
- Fachbereich Materialforschung und Physik, Abteilung Physik und Biophysik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| |
Collapse
|
41
|
Gelin MF, Egorova D, Domcke W. Exact quantum master equation for a molecular aggregate coupled to a harmonic bath. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041139. [PMID: 22181119 DOI: 10.1103/physreve.84.041139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/04/2011] [Indexed: 05/31/2023]
Abstract
We consider a molecular aggregate consisting of N identical monomers. Each monomer comprises two electronic levels and a single harmonic mode. The monomers interact with each other via dipole-dipole forces. The monomer vibrational modes are bilinearly coupled to a bath of harmonic oscillators. This is a prototypical model for the description of coherent exciton transport, from quantum dots to photosynthetic antennae. We derive an exact quantum master equation for such systems. Computationally, the master equation may be useful for the testing of various approximations employed in theories of quantum transport. Physically, it offers a plausible explanation of the origins of long-lived coherent optical responses of molecular aggregates in dissipative environments.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | | |
Collapse
|
42
|
Zhu KB, Xu RX, Zhang HY, Hu J, Yan YJ. Hierarchical Dynamics of Correlated System−Environment Coherence and Optical Spectroscopy. J Phys Chem B 2011; 115:5678-84. [DOI: 10.1021/jp2002244] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Bo Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Rui-Xue Xu
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou Yu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Jie Hu
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Jing Yan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
- Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
43
|
Strümpfer J, Schulten K. The effect of correlated bath fluctuations on exciton transfer. J Chem Phys 2011; 134:095102. [PMID: 21385000 PMCID: PMC3064689 DOI: 10.1063/1.3557042] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/01/2011] [Indexed: 01/27/2023] Open
Abstract
Excitation dynamics of various light harvesting systems have been investigated with many theoretical methods including various non-Markovian descriptions of dissipative quantum dynamics. It is typically assumed that each excited state is coupled to an independent thermal environment, i.e., that fluctuations in different environments are uncorrelated. Here the assumption is dropped and the effect of correlated bath fluctuations on excitation transfer is investigated. Using the hierarchy equations of motion for dissipative quantum dynamics it is shown for models of the B850 bacteriochlorophylls of LH2 that correlated bath fluctuations have a significant effect on the LH2→LH2 excitation transfer rate. It is also demonstrated that inclusion of static disorder is crucial for an accurate description of transfer dynamics.
Collapse
Affiliation(s)
- Johan Strümpfer
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | |
Collapse
|
44
|
Sakurai A, Tanimura Y. Does ℏ Play a Role in Multidimensional Spectroscopy? Reduced Hierarchy Equations of Motion Approach to Molecular Vibrations. J Phys Chem A 2011; 115:4009-22. [DOI: 10.1021/jp1095618] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsunori Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto Universiy, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto Universiy, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J Phys Chem B 2010; 115:758-64. [PMID: 21142050 DOI: 10.1021/jp1099514] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The light absorption in light-harvesting complexes is performed by molecules such as chlorophyll, carotenoid, or bilin. Recent experimental findings in some of these complexes suggest the existence of long-lived coherences between the individual pigments at low temperatures. In this context, the question arises if the bath-induced fluctuations at different chromophores are spatially correlated or not. Here we investigate this question for the Fenna-Matthews-Olson (FMO) complex of Chlorobaculum tepidum by a combination of atomistic theories, i.e., classical molecular dynamics simulations and semiempirical quantum chemistry calculations. In these investigations at ambient temperatures, only weak correlations between the movements of the chromophores can be detected at the atomic level and none at the more coarse-grained level of site energies. The often-employed uncorrelated bath approximations indeed seem to be valid. Nevertheless, correlations between fluctuations in the electronic couplings between the pigments can be found. Depending on the level of theory employed, also correlations between the fluctuations of site energies and the fluctuations in electronic couplings are discernible.
Collapse
Affiliation(s)
- Carsten Olbrich
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
46
|
Dijkstra AG, Tanimura Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence. PHYSICAL REVIEW LETTERS 2010; 104:250401. [PMID: 20867350 DOI: 10.1103/physrevlett.104.250401] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Indexed: 05/29/2023]
Abstract
A complete treatment of the entanglement of two-level systems, which evolves through the contact with a thermal bath, must include the fact that the system and the bath are not fully separable. Therefore, quantum coherent superpositions of system and bath states, which are almost never fully included in theoretical models, are invariably present when an entangled state is prepared experimentally. We show their importance for the time evolution of the entanglement of two qubits coupled to independent baths. In addition, our treatment is able to handle slow and low-temperature thermal baths.
Collapse
Affiliation(s)
- Arend G Dijkstra
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
47
|
Chen L, Zheng R, Shi Q, Yan Y. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers. J Chem Phys 2010; 132:024505. [DOI: 10.1063/1.3293039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Gruenbaum SM, Loring RF. Semiclassical nonlinear response functions for coupled anharmonic vibrations. J Chem Phys 2009; 131:204504. [PMID: 19947691 DOI: 10.1063/1.3266566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Observables in linear and nonlinear infrared spectroscopy may be computed from vibrational response functions describing nuclear dynamics on a single electronic surface. We demonstrate that the Herman-Kluk (HK) semiclassical approximation to the quantum propagator yields an accurate representation of quantum coherence effects in linear and nonlinear response functions for coupled anharmonic oscillators. A considerable numerical price is paid for this accuracy; the calculation requires a multidimensional integral over a highly oscillatory integrand that also grows without bound as a function of evolution times. The interference among classical trajectories in the HK approximation produces quantization of good action variables. By treating this interference analytically, we develop a mean-trajectory (MT) approximation that requires only the propagation of classical trajectories linked by transitions in action. The MT approximation accurately reproduces coherence effects in response functions of coupled anharmonic oscillators in a regime in which the observables are strongly influenced by these interactions among vibrations.
Collapse
Affiliation(s)
- Scott M Gruenbaum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
49
|
Torii H. Nature of vibrational frequency modulations and the related one- and two-dimensional vibrational spectral features analysed for the amide I mode of tetraalanine in aqueous solution. Mol Phys 2009. [DOI: 10.1080/00268970902804542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Tanimura Y, Ishizaki A. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies. Acc Chem Res 2009; 42:1270-9. [PMID: 19441802 DOI: 10.1021/ar9000444] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a thermal equilibrium state. The roles of these excitation and relaxation processes are different and complicated compared with those in the resonant spectroscopy. Observing the effects of such thermal processes is more intuitive with the oscillator model because the bath modes, which cause the fluctuation and dissipation processes, are also described in the coordinate space. This coordinate space system-bath approach complements a realistic full molecular dynamics simulation approach. By comparing the calculated 2D spectra from the coordinate space model and the energy state model, we can examine the role of thermal processes and anharmonic mode-mode couplings in the energy state model. For this purpose, we employed the Brownian oscillator model with the nonlinear system-bath interaction. Using the hierarchy formalism, we could precisely calculate multidimensional spectra for a single and multimode anharmonic system for inter- and intramolecular vibrational modes.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Akihito Ishizaki
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|