1
|
Divine-Ayela C, Perez F, Striolo A. Hop, Skip, and Jump: Hydrogen Molecular Transport through Amorphous Polyethylene Matrices Studied via Molecular Dynamics Simulations. Ind Eng Chem Res 2023; 62:19893-19906. [PMID: 38037624 PMCID: PMC10682999 DOI: 10.1021/acs.iecr.3c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
In the pursuit of advancing and diversifying energy technologies for a more sustainable future, the possibilities of hydrogen (H2) usage will broaden, as will our understanding of its containment materials. Polyethylene (PE) has a vast assortment of uses and applications, which are growing with demands for alternative energy possibilities. One use of PE liner is as a prime candidate for nonmetallic piping and pressurized type IV storage devices. Such applications require PE to effectively prevent H2 transport through containment systems. To study the molecular transport mechanism of hydrogen through polymeric barriers, a system containing hydrogen molecules absorbed within amorphous PE is modeled here using molecular dynamics simulations. The simulations are conducted within a range of temperatures that span the glass transition temperature of amorphous PE. The simulated PE displays bulk density, radius of gyration, and self-diffusion coefficient that are consistent with experimental data. The simulated trajectories are interrogated to study the movement of the guest gas molecules. The results show that the diffusion coefficients increase with temperature, as expected. However, the mobility of the PE chains is found to affect the mobility of absorbed H2 molecules to a much lower extent than it affects that of CH4 molecules because of the much smaller size of the former than of the latter guest. From a molecular perspective, a "hopping" mechanism is observed, according to which H2 molecules hop between one vacant free volume space to another within the polymer matrix, in combination with longer, straight, undisturbed "jumps" or "skips" along directions aligned with regions of ordered PE chains. This suggests that the orientation of the crystallites within the semicrystalline PE matrix affects the H2 containment. Implications of these findings toward PE usage as containment material are discussed.
Collapse
Affiliation(s)
- Candice Divine-Ayela
- Department
of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Felipe Perez
- School
of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Alberto Striolo
- Department
of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- School
of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Yang Y, Narayanan Nair AK, Sun S. Sorption and Diffusion of Methane, Carbon Dioxide, and Their Mixture in Amorphous Polyethylene at High Pressures and Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Yang Y, Narayanan Nair AK, Sun S. Sorption and Diffusion of Methane and Carbon Dioxide in Amorphous Poly(alkyl acrylates): A Molecular Simulation Study. J Phys Chem B 2020; 124:1301-1310. [PMID: 31995385 DOI: 10.1021/acs.jpcb.9b11840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular simulations were carried out to understand the structural features and the sorption and diffusion behavior of methane and carbon dioxide in amorphous poly(alkyl acrylates) in the temperature range of 300-600 K. The hybrid Monte Carlo/molecular dynamics approach was employed to address the effects of polymer swelling and framework flexibility on the gas sorption. Simulations show that the glass-transition temperature decreases with the side-chain length of poly(alkyl acrylate), consistent with experiments. This is due to the fact that the shielding of the polar ester groups increases with the side-chain length. The simulated sorption isotherms for methane and carbon dioxide were in agreement with the experimental data. The polymer swelling becomes more pronounced, especially in the case of sorption of carbon dioxide. A significant swelling occurs, possibly because of the greater interaction between carbon dioxide and the polar ester groups in the polymers. The uptake of methane and carbon dioxide by poly(alkyl acrylates) generally increases with the side-chain length. Our simulations confirm the experimental findings that the diffusion coefficients of methane and carbon dioxide in poly(alkyl acrylates) increase with the side-chain length. Interestingly, the activation energies of gas diffusion decrease with the side-chain length. The diffusion coefficients of the penetrants have an exponential relationship with the void fraction, which is in agreement with the free volume theory.
Collapse
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
4
|
Yang Y, Narayanan Nair AK, Sun S. Adsorption and Diffusion of Methane and Carbon Dioxide in Amorphous Regions of Cross-Linked Polyethylene: A Molecular Simulation Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yafan Yang
- Computational Transport Phenomena Laboratory, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Computational Transport Phenomena Laboratory, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Computational Transport Phenomena Laboratory, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Ramos J, Vega J, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Chen H, Li Y, Wang S, Li Y, Zhou Y. Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: Dramatic enhancement of the gas barrier properties by an external magnetic field. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Dutta RC, Bhatia SK. Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:936-946. [PMID: 28036185 DOI: 10.1021/acs.langmuir.6b04037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5-3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a "two-mode sorption" model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10-6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.
Collapse
Affiliation(s)
- Ravi C Dutta
- School of Chemical Engineering, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Suresh K Bhatia
- School of Chemical Engineering, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Börjesson A, Erdtman E, Ahlström P, Berlin M, Andersson T, Bolton K. Molecular modelling of oxygen and water permeation in polyethylene. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Xi L, Shah M, Trout BL. Hopping of Water in a Glassy Polymer Studied via Transition Path Sampling and Likelihood Maximization. J Phys Chem B 2013; 117:3634-47. [DOI: 10.1021/jp3099973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Li Xi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Manas Shah
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
10
|
Karayiannis NC, Foteinopoulou K, Laso M. Spontaneous crystallization in athermal polymer packings. Int J Mol Sci 2012; 14:332-58. [PMID: 23263666 PMCID: PMC3565267 DOI: 10.3390/ijms14010332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 11/17/2022] Open
Abstract
We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Katerina Foteinopoulou
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Manuel Laso
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| |
Collapse
|
11
|
Moorthi K, Kamio K, Ramos J, Theodorou DN. Monte Carlo Simulation of Short Chain Branched Polyolefins: Structure and Properties. Macromolecules 2012. [DOI: 10.1021/ma301322v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Krzysztof Moorthi
- Materials Science
Laboratory, Mitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura City 299-0265, Japan
| | - Kazunori Kamio
- Mitsui Chemicals Analysis and Consulting Service, 580-32 Nagaura, Sodegaura City 299-0265, Japan
| | - Javier Ramos
- Department
of Macromolecular Physics, Instituto de Estructura de la Materia, CSIC, Serrano
113 bis, 28006 Madrid, Spain
| | - Doros N. Theodorou
- Department of Materials Science and Engineering, School
of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zografou Campus,
15780 Athens, Greece
| |
Collapse
|
12
|
|
13
|
Bernardo G, Choudhury RP, Beckham HW. Diffusivity of small molecules in polymers: Carboxylic acids in polystyrene. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Tsolou G, Stratikis N, Baig C, Stephanou PS, Mavrantzas VG. Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues. Macromolecules 2010. [DOI: 10.1021/ma1017555] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgia Tsolou
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Nikos Stratikis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Chunggi Baig
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Pavlos S. Stephanou
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece
| |
Collapse
|
15
|
Gautieri A, Vesentini S, Redaelli A. How to predict diffusion of medium-sized molecules in polymer matrices. From atomistic to coarse grain simulations. J Mol Model 2010; 16:1845-51. [PMID: 20224911 DOI: 10.1007/s00894-010-0687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/04/2010] [Indexed: 11/29/2022]
Abstract
The normal diffusion regime of many small and medium-sized molecules occurs on a time scale that is too long to be studied by atomistic simulations. Coarse-grained (CG) molecular simulations allow to investigate length and time scales that are orders of magnitude larger compared to classical molecular dynamics simulations, hence providing a valuable approach to span time and length scales where normal diffusion occurs. Here we develop a novel multi-scale method for the prediction of diffusivity in polymer matrices which combines classical and CG molecular simulations. We applied an atomistic-based method in order to parameterize the CG MARTINI force field, providing an extension for the study of diffusion behavior of penetrant molecules in polymer matrices. As a case study, we found the parameters for benzene (as medium sized penetrant molecule whose diffusivity cannot be determined through atomistic models) and Poly (vinyl alcohol) (PVA) as polymer matrix. We validated our extended MARTINI force field determining the self diffusion coefficient of benzene (2.27·10⁻⁹m² s⁻¹) and the diffusion coefficient of benzene in PVA (0.263·10⁻¹² m² s⁻¹). The obtained diffusion coefficients are in remarkable agreement with experimental data (2.20·10⁻⁹m² s⁻¹ and 0.25·10⁻¹² m² s⁻¹, respectively). We believe that this method can extend the application range of computational modeling, providing modeling tools to study the diffusion of larger molecules and complex polymeric materials.
Collapse
Affiliation(s)
- Alfonso Gautieri
- Biomechanics Group, Department of Bioengineering, Politecnico di Milano, Via Golgi 39, 20133 Milan, Italy
| | | | | |
Collapse
|
16
|
Karayiannis NC, Kröger M. Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: methodology and performance. Int J Mol Sci 2009; 10:5054-5089. [PMID: 20087477 PMCID: PMC2808023 DOI: 10.3390/ijms10115054] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 12/02/2022] Open
Abstract
We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Martin Kröger
- Polymer Physics, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8049 Zurich, Switzerland
| |
Collapse
|
17
|
Karayiannis NC, Foteinopoulou K, Laso M. The structure of random packings of freely jointed chains of tangent hard spheres. J Chem Phys 2009; 130:164908. [DOI: 10.1063/1.3117903] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Karayiannis NC, Laso M, Kröger M. Detailed Atomistic Molecular Dynamics Simulations of α-Conotoxin AuIB in Water. J Phys Chem B 2009; 113:5016-24. [DOI: 10.1021/jp806734c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Martin Kröger
- Polymer Physics, ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
19
|
Foteinopoulou K, Karayiannis NC, Laso M, Kröger M. Structure, Dimensions, and Entanglement Statistics of Long Linear Polyethylene Chains. J Phys Chem B 2008; 113:442-55. [DOI: 10.1021/jp808287s] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katerina Foteinopoulou
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
20
|
Gestoso P, Meunier M. Barrier properties of small gas molecules in amorphous cis-1,4-polybutadiene estimated by simulation. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020802183559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|