1
|
Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Iron-Catalyzed, Light-Driven Decarboxylative Alkoxyamination. Chemistry 2024; 30:e202401252. [PMID: 38736425 DOI: 10.1002/chem.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
An iron-catalyzed visible-light driven decarboxylative alkoxyamination is disclosed. In the presence of FeBr2 and TEMPO, a large array of carboxylic acids including marketed drugs and biobased molecules is turned into the corresponding alkoxyamine derivatives. The versatility of the latter offers an entry towards molecular diversity generation from abundant starting materials and catalyst. Overall, this method proposes a unified and general approach for LMCT-based iron-catalyzed decarboxylative functionalization.
Collapse
Affiliation(s)
- Milan Innocent
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Clément Tanguy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Sigrid Gavelle
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
2
|
Bartosz G, Pieńkowska N, Kut K, Cieniek B, Stefaniuk I, Sadowska-Bartosz I. Effect of Low Concentration of Nitroxides on SH-SY5Y Cells Transfected with the Tau Protein. Int J Mol Sci 2023; 24:16675. [PMID: 38069000 PMCID: PMC10706669 DOI: 10.3390/ijms242316675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be attained in vivo. This paper aimed to examine the effects of low (≤10 μM) concentrations of three nitroxides, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL) and 4-amino-TEMPO (TEMPAMINE), in pure chemical systems and on SH-SY5Y cells transfected with the human tau protein (TAU cells), a model of chronic cellular oxidative stress, and transfected with the empty plasmid (EP cells). All nitroxides were active in antioxidant-activity tests except for the 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonate) radical (ABTS•) decolorization assay and reduced Fe3+, inhibited autoxidation of adrenalin and pyrogallol and oxidation of dihydrorhodamine123 by 3-morpholino-sydnonimine SIN-1. TEMPO protected against fluorescein bleaching from hypochlorite, but TEMPAMINE enhanced the bleaching. Nitroxides showed no cytotoxicity and were reduced by the cells to non-paramagnetic derivatives. They decreased the level of reactive oxygen species, depleted glutathione, and increased mitochondrial-membrane potential in both types of cells, and increased lipid peroxidation in TAU cells. These results demonstrate that even at low micromolar concentrations nitroxides can affect the cellular redox equilibrium and other biochemical parameters.
Collapse
Affiliation(s)
- Grzegorz Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Natalia Pieńkowska
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Kacper Kut
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Bogumił Cieniek
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| |
Collapse
|
3
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Zhao H, Pan Y, Lau KC. Ferrocene/ferrocenium, cobaltocene/cobaltocenium and nickelocene/nickelocenium: from gas phase ionization energy to one-electron reduction potential in solvated medium. Phys Chem Chem Phys 2023. [PMID: 37325896 DOI: 10.1039/d3cp01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We propose a theoretical procedure for accurate determination of reduction potentials for three metallocene couples, Cp2M+/Cp2M, where M = Fe, Co and Ni. This procedure first computes the gas phase ionization energy (IE) using the explicitly correlated CCSD(T)-F12 method and includes the zero-point energy correction, core-valence electronic correlation, and relativistic and spin-orbit coupling effects. By means of Born-Haber thermochemical cycle, the one-electron reduction potential is obtained as the sum of the gas phase IE and the corresponding Gibbs free energies of solvation (ΔGsolv) for both the neutral and cationic species. Among the three solvent models (PCM, SMD and uESE) investigated here, it turns out that only the SMD model (computed at the DFT level) gives the best estimation of the value for "ΔGsolv(cation) - ΔGsolv(neutral)" and thus, combining with the accurate IE values, the theoretical protocol is capable of yielding reliable values (in V) for , and . These predictions compare favorably with the available experimental data (in V): , , and . We show that our theoretical procedure is reliable for accurate reduction potential predictions of Cp2Fe+/Cp2Fe, Cp2Co+/Cp2Co and Cp2Ni+/Cp2Ni redox couples in aqueous and non-aqueous media; the maximum absolute deviation is as small as ≈120 mV, which outperforms those of the existing theoretical methods.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Smith LO, Crittenden DL. Acid-Base Chemistry Provides a Simple and Cost-Effective Route to New Redox-Active Ionic Liquids. Chem Asian J 2023; 18:e202201296. [PMID: 36659860 DOI: 10.1002/asia.202201296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Redox-active ionic liquids (RAILs) hold great promise as high density electrochemical energy storage materials, but are hampered by high costs and low bulk conductivities. In this work, we introduce and electrochemically characterise novel redox-active protic ionic liquids (RAPILs) formed by acid-base neutralisation from cheap and plentiful starting materials. We also demonstrate a novel RAIL-in-IL solvent system for electrochemical characterisation of RAPILs, which enables efficient and cost-effective determination of redox potentials and screening for electrochemical reversibility. Of the redox-active ionic liquids tested in this work, only propylammonium 4-nitrophenylacetate demonstrates completely reversible electrochemistry and preservation of ionic character upon redox cycling under acidic or neutral conditions. Propylammonium 2,5-dihydroxyphenyl-carboxylate also demonstrates two reversible redox processes, but is unstable to oxidation at 0.27 V vs Ag (-0.14 V vs Fc), most likely forming an uncharged benzoquinone species. Using the lessons learned from this prototypical set of RAPILs, we propose design criteria to guide future experimental and computational work.
Collapse
Affiliation(s)
- Lachlan O Smith
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
6
|
Rančić A, Babić N, Orio M, Peyrot F. Structural Features Governing the Metabolic Stability of Tetraethyl-Substituted Nitroxides in Rat Liver Microsomes. Antioxidants (Basel) 2023; 12:antiox12020402. [PMID: 36829960 PMCID: PMC9952648 DOI: 10.3390/antiox12020402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Nitroxides are potent tools for studying biological systems by electron paramagnetic resonance (EPR). Whatever the application, a certain stability is necessary for successful detection. Since conventional tetramethyl-substituted cyclic nitroxides have insufficient in vivo stability, efforts have recently been made to synthesize more stable, tetraethyl-substituted nitroxides. In our previous study on piperidine nitroxides, the introduction of steric hindrance around the nitroxide moiety successfully increased the resistance to reduction into hydroxylamine. However, it also rendered the carbon backbone susceptible to modifications by xenobiotic metabolism due to increased lipophilicity. Here, we focus on a new series of three nitroxide candidates with tetraethyl substitution, namely with pyrrolidine, pyrroline, and isoindoline cores, to identify which structural features afford increased stability for future probe design and application in in vivo EPR imaging. In the presence of rat liver microsomes, pyrrolidine and pyrroline tetraethyl nitroxides exhibited a higher stability than isoindoline nitroxide, which was studied in detail by HPLC-HRMS. Multiple metabolites suggest that the aerobic transformation of tetraethyl isoindoline nitroxide is initiated by hydrogen abstraction by P450-FeV = O from one of the ethyl groups, followed by rearrangement and further modifications by cytochrome P450, as supported by DFT calculations. Under anaerobic conditions, only reduction by rat liver microsomes was observed with involvement of P450-FeII.
Collapse
Affiliation(s)
- Aleksandra Rančić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Nikola Babić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Maylis Orio
- iSm2, Aix-Marseille University, CNRS, Centrale Marseille, F-13397 Marseille, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
- Institut National Supérieur du Professorat et de l’Education (INSPE) de l’Académie de Paris, Sorbonne Université, F-75016 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Feng H, Yang Q, Li C, Lin Y, Liu H, Zhang N, Hu B. Completely Eradicating Singlet Oxygen in Li-O 2 Battery via Cobalt(II)-Porphyrin Complex-Catalyzed LiOH Chemistry. J Phys Chem Lett 2023; 14:846-853. [PMID: 36656720 DOI: 10.1021/acs.jpclett.2c03683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Li-O2 batteries have an extremely high theoretical specific energy; however, the large charge overpotential and highly reactive singlet oxygen (1O2) are two major obstacles. Porphyrin as a special kind of macrocyclic conjugated aromatic system exhibits excellent redox activity, which can be optimized by introducing a center metal atom. Herein, 5,10,15,20-tetrakis(4-aminophenyl)-porphyrin (TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)-porphyrin-Co(II) (Co-TAP) are applied as effective redox mediators for Li-O2 batteries. The synergistic effects of a center metal atom and organic ligand make Co-TAP more favorable for oxygen reduction and evolution. To understand the fundamental reaction mechanisms with or without TAPP or Co-TAP, the discharge/charge processes and the parasitic reactions have been comprehensively studied. The results reveal that TAPP affects the formation mechanism of Li2O2, while Co-TAP transforms the main discharge product into LiOH without adding extra water. Co-TAP-containing batteries operated via LiOH chemistry completely eradicate 1O2 and significantly alleviate the parasitic reactions associated with 1O2.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Qi Yang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Yang Lin
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Haigang Liu
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
8
|
Uddin MJ, Lo JHJ, Oltman CG, Crews BC, Huda T, Liu J, Kingsley PJ, Lin S, Milad M, Aleem AM, Asaduzzaman A, McIntyre JO, Duvall CL, Marnett LJ. Discovery of a Redox-Activatable Chemical Probe for Detection of Cyclooxygenase-2 in Cells and Animals. ACS Chem Biol 2022; 17:1714-1722. [PMID: 35786843 PMCID: PMC10464600 DOI: 10.1021/acschembio.1c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclooxygenase-2 (COX-2) expression is up-regulated in inflammatory tissues and many premalignant and malignant tumors. Assessment of COX-2 protein in vivo, therefore, promises to be a powerful strategy to distinguish pathologic cells from normal cells in a complex disease setting. Herein, we report the first redox-activatable COX-2 probe, fluorocoxib Q (FQ), for in vivo molecular imaging of pathogenesis. FQ inhibits COX-2 selectively in purified enzyme and cell-based assays. FQ exhibits extremely low fluorescence and displays time- and concentration-dependent fluorescence enhancement upon exposure to a redox environment. FQ enters the cells freely and binds to the COX-2 enzyme. FQ exhibits high circulation half-life and metabolic stability sufficient for target site accumulation and demonstrates COX-2-targeted uptake and retention in cancer cells and pathologic tissues. Once taken up, it undergoes redox-mediated transformation into a fluorescent compound fluorocoxib Q-H that results in high signal-to-noise contrast and differentiates pathologic tissues from non-pathologic tissues for real-time in vivo imaging.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Justin Han-Je Lo
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Connor G. Oltman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Brenda C. Crews
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Tamanna Huda
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Justin Liu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
- Department of Neuroscience, Columbia University, New York City, New York, 10027 USA
| | - Philip J. Kingsley
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Shuyang Lin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Mathew Milad
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Ansari M. Aleem
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Abu Asaduzzaman
- Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, Kansas 67260 USA
| | - J. Oliver McIntyre
- Departments of Radiology and Radiological Sciences, and Pharmacology, Vanderbilt Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232 USA
| | - Lawrence J. Marnett
- Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| |
Collapse
|
9
|
Lee S, Lee G, Park S, Yim D, Yim T, Kim J, Kim H. Theoretical Protocol Based on Long-Range Corrected Density Functional Theory and Tuning of Range-Split Parameter for Two-Electron Two-Proton Reduction of Phenylazocarboxylates. J Phys Chem A 2022; 126:2430-2436. [PMID: 35412306 DOI: 10.1021/acs.jpca.1c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical protocol based on long-range corrected density functional theory is suggested for a highly accurate estimation of the two-electron two-proton (2e2p) reduction potential of ethyl 2-phenylazocarboxylate derivatives. Geometry optimization and single-point energy refinement with ωB97X-D are recommended. The impact of polarization and diffusion functions in the basis sets on the 2e2p reduction potential is discussed. Further improvements can be achieved by tuning the range-split parameter based on the linear relationship between the Hammett constant of phenyl substituents and the optimal ω value that most accurately reproduces the experiments. The suggested protocol can accurately predict the 2e2p reduction potential of five ethyl 2-phenylazocarboxylate derivatives. Based on these findings, 22 additional candidates are suggested to enlarge the electrochemical window and to increase the selectivity of 2e2p reactions. This study contributes to the development of a theoretical approach to accurately estimate the 2e2p reduction potential of azo groups.
Collapse
Affiliation(s)
- Serin Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Giseung Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Sanggil Park
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Daniel Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Taeeun Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jinho Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Hyungjun Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
10
|
Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Antioxid Redox Signal 2022; 36:95-121. [PMID: 34148403 PMCID: PMC8792502 DOI: 10.1089/ars.2021.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Bakalova
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ichio Aoki
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
11
|
Shang W, Peng F, Feng Q, Fang F, Pan Z, Ji X, Xia C. Nitrogen-centered radical-mediated α-sulfonimidation of ketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen-centered radical mediated α-sulfonimidation of carbonyl compounds that was initiated by a benzenesulfonimide radical generated from NFSI under the catalytic reduction of TEMPO is established.
Collapse
Affiliation(s)
- Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Fengyuan Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qianlang Feng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fei Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Lin Y, Yang Q, Geng F, Feng H, Chen M, Hu B. Suppressing Singlet Oxygen Formation during the Charge Process of Li-O 2 Batteries with a Co 3O 4 Solid Catalyst Revealed by Operando Electron Paramagnetic Resonance. J Phys Chem Lett 2021; 12:10346-10352. [PMID: 34665633 DOI: 10.1021/acs.jpclett.1c02928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries promise high energy, but the cycle life has been plagued by two major obstacles, the insulating products and highly reactive singlet oxygen (1O2), which cause higher overpotential and parasitic reactions, respectively. A solid-state catalyst is known to reduce overpotential; however, it is unclear whether it affects 1O2 generation. Herein, Co3O4 was employed as the representative catalyst in Li-O2 batteries, and 1O2 generation was investigated by ex-situ and operando electron paramagnetic resonance (EPR) spectroscopy. By comparing a carbon nanotube (CNT) cathode with a Co3O4/CNT cathode, we find that 1O2 generation in the charge process can be suppressed by the Co3O4 catalyst. After carefully studying the discharge products on the two electrodes and the corresponding decomposition processes, we conclude that a LiO2-like species is responsible for the 1O2 generation during the early charge stage. The Co3O4 catalyst reduces the amount of LiO2-like species in discharge products, and thus the 1O2 formation is suppressed.
Collapse
Affiliation(s)
- Yang Lin
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Qi Yang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Fushan Geng
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Hui Feng
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Mengdi Chen
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
13
|
Wylie L, Hakatayama-Sato K, Go C, Oyaizu K, Izgorodina EI. Electrochemical characterization and thermodynamic analysis of TEMPO derivatives in ionic liquids. Phys Chem Chem Phys 2021; 23:10205-10217. [PMID: 33481976 DOI: 10.1039/d0cp05350c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study we investigate the reversibility of the reduction process of three TEMPO derivatives - TEMPOL, 4-cyano-TEMPO, and 4-oxo-TEMPO. The [C2mim][BF4] and [C4mpyr][OTf] ionic liquids (ILs) were used to perform cyclic voltammetry (CV) to analyse the redox potentials of the TEMPO derivatives. The former was previously shown to quench the aminoxy anion of TEMPO through a proton transfer reaction with the cation, whereas the latter supported the irreversibility of the TEMPO reduction process. In CV results on TEMPO derivatives, it was shown that [C4mpyr][OTf] could allow for a high degree of reversibility in the reduction of 4-cyano-TEMPO and a moderate degree of reversibility in the reduction of TEMPOL. In comparison, reduction of 4-cyano-TEMPO was predominantly irreversible in [C2mim][BF4], whilst TEMPOL showed complete irreversibility. 4-Oxo-TEMPO did not show any notable reduction reversibility in either IL tested. Reduction potentials showed little variation between the derivatives and 0.2 V variation between the ILs, with the most negative reduction potential being observed at -1.43 V vs. Fc/Fc+ for TEMPOL in [C4mpyr][OTf]. To explain the varying degrees of reversibility of the reduction process, four types of side reactions involving proton transfer to the aminoxy anion were studied using highly correlated quantum chemical methods. Proton transfer from the IL cation was shown to have the ability to quench all three aminoxy anions depending on the IL used. On average, TEMPOL was shown to be the most susceptible to proton transfer from the IL cation, having an average Gibbs free energy (GFE) of 10.5 kJ mol-1 more negative than that of 4-cyano-TEMPO, which was shown to have the highest GFE of proton transfer. Side reactions between water and aminoxy anions were also seen to have the potential to contribute to degradation of the aminoxy anions tested, with 4-oxo-TEMPO being shown to be the most reactive to degradation with water with a GFE of -12.6 kJ mol-1. 4-Oxo-TEMPO was found to be highly susceptible to self-quenching by its aminoxy anion and radical form with highly negative proton transfer GFEs of -47.9 kJ mol-1 and -57.7 kJ mol-1, respectively. Overall, 4-cyano-TEMPO is recommended as being the most stable of the aminoxy anions tested with TEMPOL, thus providing a viable alternative to improve solubility should the IL be tuned to maximize its stability.
Collapse
Affiliation(s)
- Luke Wylie
- School of Chemistry, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| | - Kan Hakatayama-Sato
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Choitsu Go
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | | |
Collapse
|
14
|
Xie Y, Zhang K, Yamauchi Y, Oyaizu K, Jia Z. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications. MATERIALS HORIZONS 2021; 8:803-829. [PMID: 34821316 DOI: 10.1039/d0mh01391a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing demand for portable and flexible electronic devices requires seamless integration of the energy storage system with other electronic components. This ever-growing area has urged on the rapid development of new electroactive materials that not only possess excellent electrochemical properties but hold capabilities to be fabricated to desired shapes. Ideally, these new materials should have minimal impact on the environment at the end of their life. Nitroxide radical polymers (NRPs) with their remarkable electrochemical and physical properties stand out from diverse organic redox systems and have attracted tremendous attention for their identified applications in plastic energy storage and organic devices. In this review, we present a comprehensive summary of NRPs with respect to the fundamental electrochemical properties, design principles and fabrication methods for different types of energy storage systems and organic electronic devices. While highlighting some exciting progress on charge transfer theory and emerging applications, we end up with a discussion on the challenges and opportunities regarding the future directions of this field.
Collapse
Affiliation(s)
- Yuan Xie
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
15
|
Shang W, Zhu C, Peng F, Pan Z, Ding Y, Xia C. Nitrogen-Centered Radical-Mediated Cascade Amidoglycosylation of Glycals. Org Lett 2021; 23:1222-1227. [PMID: 33560134 DOI: 10.1021/acs.orglett.0c04178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nitrogen-centered radical-mediated strategy for preparing 1,2-trans-2-amino-2-deoxyglycosides in one step was established. The cascade amidoglycosylation was initiated by a benzenesulfonimide radical generated from NFSI under the catalytic reduction of TEMPO. The benzenesulfonimide radical was electrophilically added to the glycals, and then the resulting glycosidic radical was converted to oxocarbenium upon oxidation by TEMPO+, which enabled the following anomeric specific glycosylation.
Collapse
Affiliation(s)
- Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chunyu Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fengyuan Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
16
|
Choi J, Kim H. Spin-Flip Density Functional Theory for the Redox Properties of Organic Photoredox Catalysts in Excited States. J Chem Theory Comput 2021; 17:767-776. [PMID: 33449691 DOI: 10.1021/acs.jctc.0c00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoredox catalysts (PCs) have contributed to the advancement of organic chemistry by accelerating conventional reactions and enabling new pathways through the use of reactive electrons in excited states. With a number of successful applications, chemists continue to seek new promising organic PCs to achieve their objectives. Instead of labor-intensive manual experimentation, quantum chemical simulations could explore the enormous chemical space more efficiently. The reliability and accuracy of quantum chemical simulations have become important factors for material screening. We designed a theoretical protocol capable of predicting redox properties in excited states with high accuracy for a selected model system of dihydroquinoxalino[2,3-b]quinoxaline derivatives. Herein, three factors were considered as critical to achieving reliable predictions with accurate physics: the solvent medium effect on excited-state geometries, an adequate amount of Hartree-Fock exchange (HFX), and the consideration of double-excitation character in excited states. We determined that it is necessary to incorporate solvent medium during geometry optimizations to obtain planar excited-state structures that are consistent with the experimentally observed modest Stokes shift. While density functionals belonging to the generalized gradient approximation family perform well for the prediction of photoelectrochemical properties, an incorrect description of exciton boundedness (spontaneous dissociation of excitons or extremely weak boundedness) on small organic molecules was predicted. The inclusion of an adequate amount of Hartree-Fock exchange was suggested as one approach to obtain bound excitons, which is physically reasonable. The last consideration is the double-excitation character in S1 states. As revealed by the second-order algebraic diagrammatic construction theory, non-negligible double excitations exist in S1 states in our model systems. Time-dependent density functional theory (TDDFT) is blind to doubly excited states, and this motivated us to use spin-flip DFT (SF-DFT). We established a theoretical protocol that could provide highly accurate estimations of photophysical properties and ground-/excited-state redox properties, focusing on the three factors mentioned above. Geometry optimization with DFT and TDDFT employing the B3LYP functional (20% HFX) in solution and energy refinement by SF-DFT reproduced the experimental redox properties in the excited and ground states remarkably well with mean signed deviations (MSDs) of 0.01 and -0.15 V, respectively. This theoretical protocol is expected to contribute to the understanding of exciton behavior in organic PCs and to the efficient design of new promising PC candidates.
Collapse
Affiliation(s)
- Jiyoon Choi
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.,Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.,Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
17
|
Maldonado AM, Hagiwara S, Choi TH, Eckert F, Schwarz K, Sundararaman R, Otani M, Keith JA. Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms. J Phys Chem A 2021; 125:154-164. [PMID: 33393781 DOI: 10.1021/acs.jpca.0c08961] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computational quantum chemistry provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are nontrivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), charge-asymmetric nonlocally determined local-electric (CANDLE), conductor-like screening model for real solvents (COSMO-RS), and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous hydride transfer reaction-carbon dioxide (CO2) reduction by sodium borohydride (NaBH4)-as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from QM simulations, and the Na+ counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway. However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counterion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells lessens these errors. This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.
Collapse
Affiliation(s)
- Alex M Maldonado
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Satoshi Hagiwara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Tae Hoon Choi
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Frank Eckert
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Minoru Otani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - John A Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
18
|
Mesci S, Gül M, Eryılmaz S, Lis T, Szafert S, Yıldırım T. Antioxidant and cytotoxic activity of isoindole compounds in breast cancer cells (MCF-7). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
|
20
|
Babić N, Orio M, Peyrot F. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine. Free Radic Biol Med 2020; 156:144-156. [PMID: 32561320 DOI: 10.1016/j.freeradbiomed.2020.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Aminoxyl radicals (nitroxides) are a class of compounds with important biomedical applications, serving as antioxidants, spin labels for proteins, spin probes of oximetry, pH, or redox status in electron paramagnetic resonance (EPR), or as contrast agents in magnetic resonance imaging (MRI). However, the fast reduction of the radical moiety in common tetramethyl-substituted cyclic nitroxides within cells, yielding diamagnetic hydroxylamines, limits their use in spectroscopic and imaging studies. In vivo half-lives of commonly used tetramethyl-substituted nitroxides span no more than a few minutes. Therefore, synthetic efforts have focused on enhancing the nitroxide stability towards reduction by varying the electronic and steric environment of the radical. Tetraethyl-substitution at alpha position to the aminoxyl function proved efficient in vitro against reduction by ascorbate or cytosolic extracts. Moreover, 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical (TEEPONE) was used successfully for tridimensional EPR and MRI in vivo imaging of mouse head, with a reported half-life of over 80 min. We decided to investigate the stability of tetraethyl-substituted piperidine nitroxides in the presence of hepatic microsomal fractions, since no detailed study of their "metabolic stability" at the molecular level had been reported despite examples of the use of these nitroxides in vivo. In this context, the rapid aerobic transformation of TEEPONE observed in the presence of rat liver microsomal fractions and NADPH was unexpected. Combining EPR, HPLC-HRMS, and DFT studies on a series of piperidine nitroxides - TEEPONE, 4-oxo-2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPONE), and 2,2,6,6-tetraethyl-4-hydroxy(piperidin-1-yloxyl) (TEEPOL), we propose that the rapid loss in paramagnetic character of TEEPONE is not due to reduction to hydroxylamine but is a consequence of carbon backbone modification initiated by hydrogen radical abstraction in alpha position to the carbonyl by the P450-Fe(V)=O species. Besides, hydrogen radical abstraction by P450 on ethyl substituents, leading to dehydrogenation or hydroxylation products, leaves the aminoxyl function intact but could alter the linewidth of the EPR signal and thus interfere with methods relying on measurement of this parameter (EPR oximetry).
Collapse
Affiliation(s)
- Nikola Babić
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France
| | - Maylis Orio
- Aix-Marseille Univ., CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Fabienne Peyrot
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France; Sorbonne Université, Institut National Supérieur Du Professorat et de L'Éducation (INSPE) de L'Académie de Paris, F-75016, Paris, France.
| |
Collapse
|
21
|
Zhang X, Paton RS. Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chem Sci 2020; 11:9309-9324. [PMID: 34123173 PMCID: PMC8163378 DOI: 10.1039/d0sc03059g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Radical cations generated from the oxidation of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C π-bonds are synthetically useful reactive intermediates for C–C and C–X bond formation. Radical cation formation, induced by sub-stoichiometric amounts of external oxidant, are important intermediates in the Woodward–Hoffmann thermally disallowed [2 + 2] cycloaddition of electron-rich alkenes. Using density functional theory (DFT), we report the detailed mechanisms underlying the intermolecular heterodimerisation of anethole and β-methylstyrene to give unsymmetrical, tetra-substituted cyclobutanes. Reactions between trans-alkenes favour the all-trans adduct, resulting from a kinetic preference for anti-addition reinforced by reversibility at ambient temperatures since this is also the thermodynamic product; on the other hand, reactions between a trans-alkene and a cis-alkene favour syn-addition, while exocyclic rotation in the acyclic radical cation intermediate is also possible since C–C forming barriers are higher. Computations are consistent with the experimental observation that hexafluoroisopropanol (HFIP) is a better solvent than acetonitrile, in part due to its ability to stabilise the reduced form of the hypervalent iodine initiator by hydrogen bonding, but also through the stabilisation of radical cationic intermediates along the reaction coordinate. A computational study details the mechanism, catalytic cycle and origins of stereoselectivity underlying hole-catalyzed intermolecular alkene heterodimerisation to give unsymmetrical, tetra-substituted cyclobutanes.![]()
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK.,Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
22
|
Rogers FJ, Noble BB, Coote ML. Computational Optimization of Alkoxyamine-based Electrochemical Methylation. J Phys Chem A 2020; 124:6104-6110. [DOI: 10.1021/acs.jpca.0c05169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fergus J.M. Rogers
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra Australian Capital Territory 2601, Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra Australian Capital Territory 2601, Australia
| |
Collapse
|
23
|
Luzhkov VB. Treatment of the Conformational Contributions in Quantum Mechanical Calculations of the Redox Potentials of Nitroxyl Radicals. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420050155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Affiliation(s)
- F. Ruipérez
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| |
Collapse
|
25
|
New synthetic route to 2,2,6,6-tetraethylpiperidin-4-one: A key-intermediate towards tetraethyl nitroxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Bennett EL, Lawrence EJ, Blagg RJ, Mullen AS, MacMillan F, Ehlers AW, Scott DJ, Sapsford JS, Ashley AE, Wildgoose GG, Slootweg JC. A New Mode of Chemical Reactivity for Metal-Free Hydrogen Activation by Lewis Acidic Boranes. Angew Chem Int Ed Engl 2019; 58:8362-8366. [PMID: 30968535 PMCID: PMC6594078 DOI: 10.1002/anie.201900861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Indexed: 12/13/2022]
Abstract
We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5-dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical-based, redox pathway involves the homolytic cleavage of H2 , in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.
Collapse
Affiliation(s)
- Elliot L. Bennett
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Elliot J. Lawrence
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robin J. Blagg
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Anna S. Mullen
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Fraser MacMillan
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Andreas W. Ehlers
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
- Department of Chemistry, Science FacultyUniversity of JohannesburgPO Box 254, Auckland ParkJohannesburgSouth Africa
| | - Daniel J. Scott
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Joshua S. Sapsford
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Andrew E. Ashley
- Molecular Sciences Research HubImperial College White City Campus80 Wood LaneLondonW12 0BZUK
| | - Gregory G. Wildgoose
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904, PO Box 941571090 GDAmsterdamThe Netherlands
| |
Collapse
|
27
|
Krapivin VB, Sen’ VD, Luzhkov VB. Quantum chemical calculations of the one-electron oxidation potential of nitroxide spin labels in biologically active compounds. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Bennett EL, Lawrence EJ, Blagg RJ, Mullen AS, MacMillan F, Ehlers AW, Scott DJ, Sapsford JS, Ashley AE, Wildgoose GG, Slootweg JC. A New Mode of Chemical Reactivity for Metal‐Free Hydrogen Activation by Lewis Acidic Boranes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elliot L. Bennett
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Elliot J. Lawrence
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Robin J. Blagg
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Anna S. Mullen
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Fraser MacMillan
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Andreas W. Ehlers
- Van 't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
- Department of Chemistry, Science FacultyUniversity of Johannesburg PO Box 254, Auckland Park Johannesburg South Africa
| | - Daniel J. Scott
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Joshua S. Sapsford
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Andrew E. Ashley
- Molecular Sciences Research HubImperial College White City Campus 80 Wood Lane London W12 0BZ UK
| | - Gregory G. Wildgoose
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
29
|
Gaudel-Siri A, Marchal C, Ledentu V, Gigmes D, Siri D, Charles L. Collision-induced dissociation of stable nitroxides: A combined tandem mass spectrometry and computational study of TEMPO • and SG1 •. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:229-238. [PMID: 31018696 DOI: 10.1177/1469066718793247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dissociation behavior of two stable nitroxides, namely 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO•) and N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (SG1•), subjected as protonated molecules to collisional activation was investigated using a combination of different mass spectrometry experiments and theoretical calculations. Elemental composition of reaction products was derived from accurate mass data measured in high resolution tandem mass spectrometry experiments, primary fragments were distinguished from secondary ions based on both breakdown curves and MS3 data, and H/D exchange experiments were performed to support proposed structures. Postulated fragmentation pathways were then studied in terms of energetic, using the standard B3LYP/6-31G(d) method. While protonation of TEMPO• mainly occurred on the oxygen atom of the nitroxyl function, a series of protomers were found for SG1• with the adducted proton preferentially located onto the P=O group of this phosphorylated species. For both protonated nitroxides, major product ions measured in tandem mass spectrometry arose from reactions occurring at low energy costs via elimination of radical species. Formation of secondary fragments that were detected with low abundance when raising the activation level of both precursor ions could be rationalized with pathways proceeding via high energy transition states.
Collapse
Affiliation(s)
- Anouk Gaudel-Siri
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Cathie Marchal
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Vincent Ledentu
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Laurence Charles
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
30
|
Eftekhari A, Foroughifar N, Hekmati M, Khobi M. Fe
3
O
4
@
L
‐arginine magnetic nanoparticles: A novel and magnetically retrievable catalyst for the synthesis of 1′3‐diaryl‐2N‐azaphenalene. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Asghar Eftekhari
- Department of Organic ChemistryFaculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Naser Foroughifar
- Department of Chemistry, Tehran North BranchIslamic Azad University Tehran Islamic Republic of Iran
| | - Malak Hekmati
- Department of Organic ChemistryFaculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Mahdi Khobi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research CenterTehran University of Medical Sciences Tehran Islamic Republic of Iran
| |
Collapse
|
31
|
Reduction Potential Predictions for Some 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives with Known Anti-Tumor Properties. COMPUTATION 2019. [DOI: 10.3390/computation7010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability for DFT: B3LYP calculations using the 6-31g and lanl2dz basis sets to predict the electrochemical properties of twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives with varying degrees of cytotoxic activity in dimethylformamide (DMF) was investigated. There was a strong correlation for the first reduction and moderate-to-low correlation of the second reduction of the diazine ring between the computational and the experimental data, with the exception of the derivative containing the nitro functionality. The four (4) nitro group derivatives are clear outliers in the overall data sets and the derivative E4 is ill-behaved. The remaining three (3) derivatives containing the nitro groups had a strong correlation between the computational and experimental data; however, the computational data falls substantially outside of the expected range.
Collapse
|
32
|
Miao Q, Shao Z, Shi C, Ma L, Wang F, Fu R, Gao H, Li Z. Metal-free C–H amination of arene with N-fluorobenzenesulfonimide catalysed by nitroxyl radicals at room temperature. Chem Commun (Camb) 2019; 55:7331-7334. [DOI: 10.1039/c9cc02739d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first C–H amination of arene with NFSI via organocatalysis is disclosed, which can be achieved at room temperature with a broad substrate scope.
Collapse
Affiliation(s)
- Qi Miao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhong Shao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ruoqi Fu
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haochen Gao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
33
|
Krapivin VB, Mendkovich AS, Sen’ VD, Luzhkov VB. Quantum chemical calculations of hydration electrostatics and electrochemical oxidation potential of cyclic nitroxide radicals. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Phan NA, Fettinger JC, Berben LA. A Ligand Protonation Series in Aluminum(III) Complexes of Tridentate Bis(enol)amine Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan A. Phan
- Department of Chemistry, University of California Davis, Davis, California 95615, United States
| | - James C. Fettinger
- Department of Chemistry, University of California Davis, Davis, California 95615, United States
| | - Louise A. Berben
- Department of Chemistry, University of California Davis, Davis, California 95615, United States
| |
Collapse
|
35
|
Zheng C, Wang Y, Xu Y, Chen Z, Chen G, Liang SH. Ru-Photoredox-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids through N-(acyloxy)phthalimide. Org Lett 2018; 20:4824-4827. [DOI: 10.1021/acs.orglett.8b01885] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Collaborative Innovation Center of Tropical Biological Resources, Hainan Normal University, Hainan Haikou 571158, China
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yuting Wang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Collaborative Innovation Center of Tropical Biological Resources, Hainan Normal University, Hainan Haikou 571158, China
| | - Yangrui Xu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Collaborative Innovation Center of Tropical Biological Resources, Hainan Normal University, Hainan Haikou 571158, China
| | - Zhen Chen
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Collaborative Innovation Center of Tropical Biological Resources, Hainan Normal University, Hainan Haikou 571158, China
| | - Steven H. Liang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
36
|
Magdesieva TV, Levitskiy OA. Molecular design of stable diarylnitroxides. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review is devoted to diarylnitroxides, which constitute an important type of organic radicals. These compounds are much less investigated than their alkyl counterparts. Meanwhile, they are of great interest, since they provide extensive opportunities for targeted structural modification and control of electronic properties of a molecule for a particular practical application. The existing trends of molecular design of stable diarylnitroxides and general approaches to their synthesis are discussed. Structural details and spin density distribution in diarylnitroxides are considered. Factors determining the stability of both the diarylnitroxide radicals and their oxidized and reduced forms and the redox properties of this class of organic radicals are addressed.
The bibliography includes 128 references.
Collapse
|
37
|
Nutting JE, Rafiee M, Stahl SS. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chem Rev 2018; 118:4834-4885. [PMID: 29707945 DOI: 10.1021/acs.chemrev.7b00763] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
N-Oxyl compounds represent a diverse group of reagents that find widespread use as catalysts for the selective oxidation of organic molecules in both laboratory and industrial applications. While turnover of N-oxyl catalysts in oxidation reactions may be accomplished with a variety of stoichiometric oxidants, N-oxyl reagents have also been extensively used as catalysts under electrochemical conditions in the absence of chemical oxidants. Several classes of N-oxyl compounds undergo facile redox reactions at electrode surfaces, enabling them to mediate a wide range of electrosynthetic reactions. Electrochemical studies also provide insights into the structural properties and mechanisms of chemical and electrochemical catalysis by N-oxyl compounds. This review provides a comprehensive survey of the electrochemical properties and electrocatalytic applications of aminoxyls, imidoxyls, and related reagents, of which the two prototypical and widely used examples are 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and phthalimide N-oxyl (PINO).
Collapse
Affiliation(s)
- Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Mohammad Rafiee
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
38
|
Levitskiy OA, Magdesieva TV. Computational electrochemistry of diarylnitroxides. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Kong Y, Wumaier K, Liu Y, Jiang C, Wang S, Liu L, Chang W, Li J. Cu(OAc) 2 /TEMPO Cooperative Promoted Hydroamination Cyclization and Oxidative Dehydrogenation Cascade Reaction of Homopropargylic Amines. Chem Asian J 2018; 13:46-54. [PMID: 29178594 DOI: 10.1002/asia.201701386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A novel and efficient Cu(OAc)2 -catalyzed hydroamination cyclization and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidative dehydrogenation cascade reaction of homopropargylic amines has been developed. A library of 1,2-disubstituted pyrrole derivatives were obtained in good-to-high yields in one pot with no step-by-step feeding process. This reaction involved TEMPO playing dual roles as both an oxidative dehydrogenation reagent and a ligand. An insight into the reaction mechanism was obtained by using several analytical determination methods.
Collapse
Affiliation(s)
- Yuanfang Kong
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kediliya Wumaier
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingze Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunhui Jiang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuai Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin, 300071, China
| |
Collapse
|
40
|
Zhang K, Noble BB, Mater AC, Monteiro MJ, Coote ML, Jia Z. Effect of heteroatom and functionality substitution on the oxidation potential of cyclic nitroxide radicals: role of electrostatics in electrochemistry. Phys Chem Chem Phys 2018; 20:2606-2614. [DOI: 10.1039/c7cp07444a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic effects on electrochemical oxidation potentials of heteroatomic and functional substituted nitroxides were studied both experimentally and computationally.
Collapse
Affiliation(s)
- Kai Zhang
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Adam C. Mater
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electomaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
| |
Collapse
|
41
|
Hansen KA, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018. [DOI: 10.1039/c7py02001e] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A comprehensive summary of synthetic strategies for the preparation of nitroxide radical polymer materials and a state-of-the-art perspective on their latest and most exciting applications.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
42
|
Kreutzer J, Yagci Y. Metal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities. Polymers (Basel) 2017; 10:E35. [PMID: 30966069 PMCID: PMC6415071 DOI: 10.3390/polym10010035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
A considerable amount of the worldwide industrial production of synthetic polymers is currently based on radical polymerization methods. The steadily increasing demand on high performance plastics and tailored polymers which serve specialized applications is driven by the development of new techniques to enable control of polymerization reactions on a molecular level. Contrary to conventional radical polymerization, reversible-deactivation radical polymerization (RDRP) techniques provide the possibility to prepare polymers with well-defined structures and functionalities. The review provides a comprehensive summary over the development of the three most important RDRP methods, which are nitroxide mediated radical polymerization, atom transfer radical polymerization and reversible addition fragmentation chain transfer polymerization. The focus thereby is set on the newest developments in transition metal free systems, which allow using these techniques for biological or biomedical applications. After each section selected examples from materials synthesis and application to biomedical materials are summarized.
Collapse
Affiliation(s)
- Johannes Kreutzer
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
43
|
Bleve V, Franchi P, Konstanteli E, Gualandi L, Goldup SM, Mezzina E, Lucarini M. Synthesis and Characterisation of a Paramagnetic [2]Rotaxane Based on a Crown Ether-Like Wheel Incorporating a Nitroxide Motif. Chemistry 2017; 24:1198-1203. [DOI: 10.1002/chem.201704969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Bleve
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Paola Franchi
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Evangelia Konstanteli
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
- Nationaland Kapodistria; University of Athens; Greece
| | - Lorenzo Gualandi
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Stephen M. Goldup
- Department of Chemistry; University of Southampton; Southampton SO17 1BJ UK
| | - Elisabetta Mezzina
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Marco Lucarini
- Department of Chemistry “Giacomo. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| |
Collapse
|
44
|
Novák M, Mikysek T, Růžička A, Dostál L, Jambor R. Electrochemical and Reactivity Studies of N→Sn Coordinated Distannynes. Chemistry 2017; 24:1104-1111. [DOI: 10.1002/chem.201703960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Miroslav Novák
- Department of Polymer Science; University of Pardubice; 532 10 Pardubice Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; 532 10 Pardubice Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry; University of Pardubice; 532 10 Pardubice Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry; University of Pardubice; 532 10 Pardubice Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry; University of Pardubice; 532 10 Pardubice Czech Republic
| |
Collapse
|
45
|
Vetica F, Bailey S, Chauhan P, Turberg M, Ghaur A, Raabe G, Enders D. Desymmetrization of Cyclopentenediones via
Organocatalytic Cross-Dehydrogenative Coupling. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabrizio Vetica
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Stephen Bailey
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Pankaj Chauhan
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Mathias Turberg
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Adjmal Ghaur
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Gerhard Raabe
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Dieter Enders
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
46
|
Influence of the nature of solvent and substituents on the oxidation potential of 2,2,6,6-tetramethylpiperidine 1-oxyl derivatives. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Levitskiy OA, Eremin DB, Bogdanov AV, Magdesieva TV. Twisted Diarylnitroxides: An Efficient Route for Radical Stabilization. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oleg A. Levitskiy
- Chemistry Department; Lomonosov Moscow State University; Leninskie Gory 1/3 119991 Moscow Russia
| | - Dmitry B. Eremin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences; Leninsky Prospect 47 Moscow Russia
| | - Alexey V. Bogdanov
- Chemistry Department; Lomonosov Moscow State University; Leninskie Gory 1/3 119991 Moscow Russia
| | - Tatiana V. Magdesieva
- Chemistry Department; Lomonosov Moscow State University; Leninskie Gory 1/3 119991 Moscow Russia
| |
Collapse
|
48
|
Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones. Molecules 2017; 22:molecules22040577. [PMID: 28375183 PMCID: PMC6154728 DOI: 10.3390/molecules22040577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p-quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R2 higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values (R2 = 0.957), followed by M06-2x (R2 = 0.947) and PBE0 (R2 = 0.942).
Collapse
|
49
|
Munk L, Punt AM, Kabel MA, Meyer AS. Laccase catalyzed grafting of –N–OH type mediators to lignin via radical–radical coupling. RSC Adv 2017. [DOI: 10.1039/c6ra26106j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lignin can be functionalized with –N–OH type mediators via laccase catalysis. Three radical coupling mechanisms are suggested for this enzymatic “hetero-functionalization” which may be a new route for biomass lignin upgrading.
Collapse
Affiliation(s)
- L. Munk
- Center for BioProcess Engineering
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| | - A. M. Punt
- Laboratory of Food Chemistry
- Wageningen University
- Wageningen
- The Netherlands
| | - M. A. Kabel
- Laboratory of Food Chemistry
- Wageningen University
- Wageningen
- The Netherlands
| | - A. S. Meyer
- Center for BioProcess Engineering
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
50
|
Nandi J, Ovian JM, Kelly CB, Leadbeater NE. Oxidative functionalisation of alcohols and aldehydes via the merger of oxoammonium cations and photoredox catalysis. Org Biomol Chem 2017; 15:8295-8301. [DOI: 10.1039/c7ob02243c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The merger of oxoammonium cation mediated oxidation with visible-light photoredox catalysis is demonstrated in the oxidative amidation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Jyoti Nandi
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - John M. Ovian
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | | |
Collapse
|