Lee HH, Ruzele Z, Malysheva L, Onipko A, Gutés A, Björefors F, Valiokas R, Liedberg B. Long-chain alkylthiol assemblies containing buried in-plane stabilizing architectures.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009;
25:13959-13971. [PMID:
19791763 DOI:
10.1021/la901668u]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of alkylthiol compounds were synthesized to study the formation and structure of complex self-assembled monolayers (SAMs) consisting of interchanging structural modules stabilized by intermolecular hydrogen bonds. The chemical structure of the synthesized compounds, HS(CH(2))(15)CONH(CH(2)CH(2)O)(6)CH(2)CONH-X, where X refers to the extended chains of either -(CH(2))(n)CH(3) or -(CD(2))(n)CD(3), with n = 0, 1, 7, 8, 15, was confirmed by NMR and elemental analysis. The formation of highly ordered, methyl-terminated SAMs on gold from diluted ethanolic solutions of these compounds was revealed using contact angle goniometry, null ellipsometry, cyclic voltammetry, and infrared reflection absorption spectroscopy. The experimental work was complemented with extensive DFT modeling of infrared spectra and molecular orientation. New assignments were introduced for both nondeuterated and deuterated compounds. The latter set of compounds also served as a convenient tool to resolve the packing, conformation, and orientation of the buried and extended modules within the SAM. Thus, it was shown that the lower alkyl portion together with the hexa(ethylene glycol) portion is stabilized by the two layers of lateral hydrogen bonding networks between the amide groups, and they provide a structurally robust support for the extended alkyls. The presented system can be considered to be an extension of the well-known alkyl SAM platform, enabling precise engineering of nanoscopic architectures on the length scale from a few to approximately 60 A for applications such as cell membrane mimetics, molecular nanolithography, and so forth.
Collapse