1
|
Yamamoto R, Segawa R, Kato H, Niino Y, Sato T, Hiratsuka M, Hirasawa N. Identification of amino acids in transmembrane domains of mutated cytokine receptor-like factor 2 and interleukin-7 receptor α required for constitutive signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184359. [PMID: 38862034 DOI: 10.1016/j.bbamem.2024.184359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Cytokine receptor-like factor 2 (CRLF2) and interleukin-7 receptor α (IL-7Rα) form a receptor for thymic stromal lymphopoietin (TSLP). A somatic mutation consisting of the substitution of five amino acids (SLLLL) in the transmembrane domain of CRLF2 with three amino acids, including glutamic acid, isoleucine, and methionine (insEIM), which has been identified in acute lymphocytic leukemia, causes the TSLP-independent dimerization with IL-7Rα and activation. However, the dimerization mechanism remains unclear. In this study, we examined the involvement of the amino acids in the transmembrane domains of EIM CRLF2 and IL-7Rα in TSLP-independent activation. HEK293 cells were transfected with vectors encoding CRLF2 and IL-7Rα, or their mutants, in which the amino acid of the transmembrane domain was replaced with alanine. STAT5 phosphorylation was detected using western blotting, and receptor dimerization was analyzed using the NanoBiT assay. The substitution of glutamic acid within the insEIM mutation for alanine failed to cause the STAT5 phosphorylation in the absence of TSLP. Moreover, the alanine substation of the specific leucine residues in the transmembrane domains of both CRLF2 and IL-7Rα abrogated the TSLP-independent signal transduction and dimerization. The mutation of IL-7Rα W264 partially reduced the phosphorylation of STAT5 without affecting receptor dimerization. These results suggest that the amino acids in the transmembrane domains of EIM CRLF2 and IL-7Rα play at least three possible functions: interaction through hydrogen bonds, hydrophobic interaction, and signal transduction. Our findings contribute to a better understanding of the function of the transmembrane domains of cytokine receptors in their dimerization and signal transduction.
Collapse
Affiliation(s)
- Rio Yamamoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Hiyori Kato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Yuya Niino
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, 607-8414 Kyoto, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
2
|
Muhammednazaar S, Yao J, Guo R, Rhee MS, Kim KH, Kang SG, Hong H. Lipid Bilayer Strengthens the Cooperative Network of a Membrane-Integral Enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542905. [PMID: 37398072 PMCID: PMC10312574 DOI: 10.1101/2023.05.30.542905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lipid bilayer provides a two-dimensional hydrophobic solvent milieu for membrane proteins in cells. Although the native bilayer is widely recognized as an optimal environment for folding and function of membrane proteins, the underlying physical basis remains elusive. Here, employing the intramembrane protease GlpG of Escherichia coli as a model, we elucidate how the bilayer stabilizes a membrane protein and engages the protein's residue interaction network compared to the nonnative hydrophobic medium, micelles. We find that the bilayer enhances GlpG stability by promoting residue burial in the protein interior compared to micelles. Strikingly, while the cooperative residue interactions cluster into multiple distinct regions in micelles, the whole packed regions of the protein act as a single cooperative unit in the bilayer. Molecular dynamics (MD) simulation indicates that lipids less efficiently solvate GlpG than detergents. Thus, the bilayerinduced enhancement of stability and cooperativity likely stems from the dominant intraprotein interactions outcompeting the weak lipid solvation. Our findings reveal a foundational mechanism in the folding, function, and quality control of membrane proteins. The enhanced cooperativity benefits function facilitating propagation of local structural perturbation across the membrane. However, the same phenomenon can render the proteins' conformational integrity vulnerable to missense mutations causing conformational diseases1,2.
Collapse
Affiliation(s)
| | - Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - May S Rhee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kelly H Kim
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Seung-Gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Daniecki NJ, Bhatt MR, Yap GPA, Zondlo NJ. Proline C-H Bonds as Loci for Proline Assembly via C-H/O Interactions. Chembiochem 2022; 23:e202200409. [PMID: 36129371 DOI: 10.1002/cbic.202200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Indexed: 01/25/2023]
Abstract
Proline residues within proteins lack a traditional hydrogen bond donor. However, the hydrogens of the proline ring are all sterically accessible, with polarized C-H bonds at Hα and Hδ that exhibit greater partial positive character and can be utilized as alternative sites for molecular recognition. C-H/O interactions, between proline C-H bonds and oxygen lone pairs, have been previously identified as modes of recognition within protein structures and for higher-order assembly of protein structures. In order to better understand intermolecular recognition of proline residues, a series of proline derivatives was synthesized, including 4R-hydroxyproline nitrobenzoate methyl ester, acylated on the proline nitrogen with bromoacetyl and glycolyl groups, and Boc-4S-(4-iodophenyl)hydroxyproline methyl amide. All three derivatives exhibited multiple close intermolecular C-H/O interactions in the crystallographic state, with H⋅⋅⋅O distances as close as 2.3 Å. These observed distances are well below the 2.72 Å sum of the van der Waals radii of H and O, and suggest that these interactions are particularly favorable. In order to generalize these results, we further analyzed the role of C-H/O interactions in all previously crystallized derivatives of these amino acids, and found that all 26 structures exhibited close intermolecular C-H/O interactions. Finally, we analyzed all proline residues in the Cambridge Structural Database of small-molecule crystal structures. We found that the majority of these structures exhibited intermolecular C-H/O interactions at proline C-H bonds, suggesting that C-H/O interactions are an inherent and important mode for recognition of and higher-order assembly at proline residues. Due to steric accessibility and multiple polarized C-H bonds, proline residues are uniquely positioned as sites for binding and recognition via C-H/O interactions.
Collapse
Affiliation(s)
- Noah J Daniecki
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Asghar S, Hameed S, Tahir MN, Naseer MM. Molecular duplexes featuring NH···N, CH···O and CH···π interactions in solid-state self-assembly of triazine-based compounds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220603. [PMID: 36397969 PMCID: PMC9626258 DOI: 10.1098/rsos.220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Synthetic supramolecular structures constructed through the cooperative action of numerous non-covalent forces are highly desirable as models to unravel and understand the complexity of systems created in nature via self-assembly. Taking advantage of the low cost of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) and the sequential nucleophilic substitution reactions with almost all types of nucleophiles, a series of six structurally related novel s-triazine derivatives 1-6 were synthesized and structurally characterized based on their physical, spectral and crystallographic data. The solid-state structures of all the six compounds showed intriguing and unique molecular duplexes featuring NH···N, CH···O and CH···π interactions. Careful analysis of different geometric parameters of the involved H-bonds indicates that they are linear, significant and are therefore responsible for guiding the three-dimensional structure of these compounds in the solid state. The prevalence of sextuple hydrogen bond array-driven molecular duplexes and the possibility of structural modifications on the s-triazine ring render these novel triazine derivatives 1-6 attractive as a platform to create heteroduplex constructs and their subsequent utility in the field of supramolecular chemistry and crystal engineering.
Collapse
Affiliation(s)
- Shazia Asghar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | |
Collapse
|
5
|
Hou M, Li Q, Scheiner S. The ability of a tetrel bond to transition a neutral amino acid into a zwitterion. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Madhavi WAM, Weerasinghe S, Fullerton GD, Momot KI. Structure and Dynamics of Collagen Hydration Water from Molecular Dynamics Simulations: Implications of Temperature and Pressure. J Phys Chem B 2019; 123:4901-4914. [PMID: 31117617 DOI: 10.1021/acs.jpcb.9b03078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamics of water molecules in hydrated collagen plays an important role in determining the structural and functional properties of collagenous tissues. Experimental results suggest that collagen-bridging water molecules exhibit dynamic and thermodynamic properties of one-dimensional ice. However, molecular dynamics (MD) studies performed to date have failed to identify icelike water bridges. It has been hypothesized that this discrepancy is due to the experimental measurements and computational MD analysis having been performed on very different systems: complete tissues with large-scale collagen fiber assemblies and individual tropocollagen fragments, respectively. In this work, we explore ways of emulating a tissuelike macromolecular environment in MD simulations of hydrated collagen without increasing the size of the system to computationally prohibitive levels. We have investigated the effects of temperature and pressure on the dynamics of a small hydrated tropocollagen fragment. The occupancy and bond energies of interchain hydrogen bonds were relatively insensitive to temperature, suggesting that they play a key role in the stability of the collagen triple helix. The lifetimes of water bridges lengthened with decreasing temperature, but even at 280 K, no bridging water molecules exhibited icelike dynamics. We discuss the implications of these findings for the ability to emulate tissuelike conditions in hydrated collagen.
Collapse
Affiliation(s)
- W A Monika Madhavi
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , GPO Box 2434, Brisbane , QLD 4001 , Australia
| | | | - Gary D Fullerton
- Department of Radiology , University of Texas Health SA , San Antonio , Texas 78229-3900 , United States
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , GPO Box 2434, Brisbane , QLD 4001 , Australia
| |
Collapse
|
7
|
Bragin PE, Kuznetsov AS, Bocharova OV, Volynsky PE, Arseniev AS, Efremov RG, Mineev KS. Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2486-2498. [PMID: 30279150 DOI: 10.1016/j.bbamem.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
The interaction between the secondary structure elements is the key process, determining the spatial structure and activity of a membrane protein. Transmembrane (TM) helix-helix interaction is known to be especially important for the function of so-called type I or bitopic membrane proteins. In the present work, we present the approach to study the helix-helix interaction in the TM domains of membrane proteins in various lipid environment using solution NMR spectroscopy and phospholipid bicelles. The technique is based on the ability of bicelles to form particles with the size, depending on the lipid/detergent ratio. To implement the approach, we report the experimental parameters of "ideal bicelle" models for four kinds of zwitterionic phospholipids, which can be also used in other structural studies. We show that size of bicelles and type of the rim-forming detergent do not affect substantially the spatial structure and stability of the model TM dimer. On the other hand, the effect of bilayer thickness on the free energy of the dimer is dramatic, while the structure of the protein is unchanged in various lipids with fatty chains having a length from 12 to 18 carbon atoms. The obtained data is analyzed using the computer simulations to find the physical origin of the observed effects.
Collapse
Affiliation(s)
- P E Bragin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
| | - A S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - O V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation
| | - P E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation
| | - R G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation.
| |
Collapse
|
8
|
Kotov N, Raus V, Dybal J. Intermolecular Interactions in N, N-Dimethylacetamide without and with LiCl Studied by Infrared Spectroscopy and Quantum Chemical Model Calculations. J Phys Chem B 2018; 122:8921-8930. [PMID: 30179487 DOI: 10.1021/acs.jpcb.8b05569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mixture of LiCl and N, N-dimethylacetamide (DMAc) is an important laboratory-scale solvent for cellulose. However, the mechanism of cellulose dissolution in DMAc/LiCl could not be fully established due to the limited knowledge about the interactions between DMAc and LiCl. To address this issue, we studied neat DMAc and DMAc/LiCl mixtures by ATR FTIR spectroscopy and quantum chemical model calculations. On the basis of the calculations, we newly assigned the bands at 1660 and 1642 cm-1 in the ν(C═O) region of the spectra to DMAc monomeric and dimeric structures. The latter are presumably stabilized by the C-H···O═C weak hydrogen bonds that prevail in both neat DMAc and DMAc/LiCl mixtures. The analysis of the concentrated (7.9 wt % of LiCl) DMAc/LiCl mixture revealed that only about half of DMAc molecules interact directly with LiCl. The resulting average stoichiometry of about 2.8:1 (DMAc:LiCl), indicating the predominance of [(DMAc)2-LiCl] and [(DMAc)3-LiCl] complexes, was found to be temperature independent. Conversely, the stoichiometry was considerably temperature sensitive for the diluted DMAc/LiCl mixture (2.6 wt % of LiCl), indicating that further DMAc molecules can be incorporated into the primary solvation shell of LiCl at higher temperatures. These results highlight the dynamic character of the DMAc/LiCl system that needs to be considered when studying the cellulose dissolution mechanism.
Collapse
Affiliation(s)
- Nikolay Kotov
- Institute of Macromolecular Chemistry , Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2 , 162 06 Prague 6 , Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry , Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2 , 162 06 Prague 6 , Czech Republic
| | - Jiří Dybal
- Institute of Macromolecular Chemistry , Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2 , 162 06 Prague 6 , Czech Republic
| |
Collapse
|
9
|
Anderson SM, Mueller BK, Lange EJ, Senes A. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. J Am Chem Soc 2017; 139:15774-15783. [PMID: 29028318 PMCID: PMC5927632 DOI: 10.1021/jacs.7b07505] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GxxxG motif is frequently found at the dimerization interface of a transmembrane structural motif called GASright, which is characterized by a short interhelical distance and a right-handed crossing angle between the helices. In GASright dimers, such as glycophorin A (GpA), BNIP3, and members of the ErbB family, the backbones of the helices are in contact, and they invariably display networks of 4 to 8 weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O═C hydrogen bonds). These networks of weak hydrogen bonds at the helix-helix interface are presumably stabilizing, but their energetic contribution to dimerization has yet to be determined experimentally. Here, we present a computational and experimental structure-based analysis of GASright dimers of different predicted stabilities, which show that a combination of van der Waals packing and Cα-H hydrogen bonding predicts the experimental trend of dimerization propensities. This finding provides experimental support for the hypothesis that the networks of Cα-H hydrogen bonds are major contributors to the free energy of association of GxxxG-mediated dimers. The structural comparison between groups of GASright dimers of different stabilities reveals distinct sequence as well as conformational preferences. Stability correlates with shorter interhelical distances, narrower crossing angles, better packing, and the formation of larger networks of Cα-H hydrogen bonds. The identification of these structural rules provides insight on how nature could modulate stability in GASright and finely tune dimerization to support biological function.
Collapse
Affiliation(s)
- Samantha M Anderson
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Benjamin K Mueller
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Evan J Lange
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:561-576. [PMID: 27884807 DOI: 10.1016/j.bbamem.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow, 123182, Russian Federation.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation; National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow, 119049, Russian Federation
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
11
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
12
|
Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, Senes A. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J Am Chem Soc 2014; 136:14068-77. [PMID: 25216398 PMCID: PMC4195374 DOI: 10.1021/ja505017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between α-helices within the hydrophobic environment of lipid bilayers are integral to the folding and function of transmembrane proteins; however, the major forces that mediate these interactions remain debated, and our ability to predict these interactions is still largely untested. We recently demonstrated that the frequent transmembrane association motif GASright, the GxxxG-containing fold of the glycophorin A dimer, is optimal for the formation of extended networks of Cα-H hydrogen bonds, supporting the hypothesis that these bonds are major contributors to association. We also found that optimization of Cα-H hydrogen bonding and interhelical packing is sufficient to computationally predict the structure of known GASright dimers at near atomic level. Here, we demonstrate that this computational method can be used to characterize the structure of a protein not previously known to dimerize, by predicting and validating the transmembrane dimer of ADCK3, a mitochondrial kinase. ADCK3 is involved in the biosynthesis of the redox active lipid, ubiquinone, and human ADCK3 mutations cause a cerebellar ataxia associated with ubiquinone deficiency, but the biochemical functions of ADCK3 remain largely undefined. Our experimental analyses show that the transmembrane helix of ADCK3 oligomerizes, with an interface based on an extended Gly-zipper motif, as predicted by our models. The data provide strong evidence for the hypothesis that optimization of Cα-H hydrogen bonding is an important factor in the association of transmembrane helices. This work also provides a structural foundation for investigating the role of transmembrane association in regulating the biological activity of ADCK3.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
13
|
A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds. Proc Natl Acad Sci U S A 2014; 111:E888-95. [PMID: 24569864 DOI: 10.1073/pnas.1319944111] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon hydrogen bonds between Cα-H donors and carbonyl acceptors are frequently observed between transmembrane helices (Cα-H···O=C). Networks of these interactions occur often at helix-helix interfaces mediated by GxxxG and similar patterns. Cα-H hydrogen bonds have been hypothesized to be important in membrane protein folding and association, but evidence that they are major determinants of helix association is still lacking. Here we present a comprehensive geometric analysis of homodimeric helices that demonstrates the existence of a single region in conformational space with high propensity for Cα-H···O=C hydrogen bond formation. This region corresponds to the most frequent motif for parallel dimers, GASright, whose best-known example is glycophorin A. The finding suggests a causal link between the high frequency of occurrence of GASright and its propensity for carbon hydrogen bond formation. Investigation of the sequence dependency of the motif determined that Gly residues are required at specific positions where only Gly can act as a donor with its "side chain" Hα. Gly also reduces the steric barrier for non-Gly amino acids at other positions to act as Cα donors, promoting the formation of cooperative hydrogen bonding networks. These findings offer a structural rationale for the occurrence of GxxxG patterns at the GASright interface. The analysis identified the conformational space and the sequence requirement of Cα-H···O=C mediated motifs; we took advantage of these results to develop a structural prediction method. The resulting program, CATM, predicts ab initio the known high-resolution structures of homodimeric GASright motifs at near-atomic level.
Collapse
|
14
|
Koeller S, Thomas C, Peruch F, Deffieux A, Massip S, Léger JM, Desvergne JP, Milet A, Bibal B. α-Halogenoacetanilides as Hydrogen-Bonding Organocatalysts that Activate Carbonyl Bonds: Fluorine versus Chlorine and Bromine. Chemistry 2014; 20:2849-59. [DOI: 10.1002/chem.201303662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 02/04/2023]
|
15
|
Bagdi PR, Basha RS, Baruah PK, Khan AT. Copper oxide nanoparticle mediated ‘click chemistry’ for the synthesis of mono-, bis- and tris-triazole derivatives from 10,10-dipropargyl-9-anthrone as a key building block. RSC Adv 2014. [DOI: 10.1039/c3ra44869j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Veljković DŽ, Medaković VB, Andrić JM, Zarić SD. C–H/O interactions of nucleic bases with a water molecule: a crystallographic and quantum chemical study. CrystEngComm 2014. [DOI: 10.1039/c4ce00595c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C–H/O interactions of nucleic bases are substantially stronger than the C–H/O interactions of benzene and pyridine. These results can be very important for molecular recognition of DNA and RNA.
Collapse
Affiliation(s)
- D. Ž. Veljković
- Department of Chemistry
- University of Belgrade
- 11000 Belgrade, Serbia
| | - V. B. Medaković
- Department of Chemistry
- University of Belgrade
- 11000 Belgrade, Serbia
| | - J. M. Andrić
- Innovation Center
- Department of Chemistry
- 11000 Belgrade, Serbia
| | - S. D. Zarić
- Department of Chemistry
- University of Belgrade
- 11000 Belgrade, Serbia
- Department of Chemistry
- Texas A&M University at Qatar
| |
Collapse
|
17
|
Dragelj JL, Janjić GV, Veljković DŽ, Zarić SD. Crystallographic and ab initio study of pyridine CH–O interactions: linearity of the interactions and influence of pyridine classical hydrogen bonds. CrystEngComm 2013. [DOI: 10.1039/c3ce40759d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Jones CR, Baruah PK, Thompson AL, Scheiner S, Smith MD. Can a C-H···O interaction be a determinant of conformation? J Am Chem Soc 2012; 134:12064-71. [PMID: 22789294 DOI: 10.1021/ja301318a] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whether nonconventional hydrogen bonds, such as the C-H···O interaction, are a consequence or a determinant of conformation is a long-running and unresolved issue. Here we outline a solid-state and quantum mechanical study designed to investigate whether a C-H···O interaction can override the significant trans-planar conformational preferences of α-fluoroamide substituents. A profound change in dihedral angle from trans-planar((OCCF)) to cis-planar((OCCF)) observed on introducing an acceptor group for a C-H···O hydrogen bond is consistent with this interaction functioning as a determinant of conformation in certain systems. This testifies to the potential influence of the C-H···O hydrogen bond and is consistent with the assignment of this interaction as a contributor to overall conformation in both model and natural systems.
Collapse
Affiliation(s)
- Christopher R Jones
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | |
Collapse
|
19
|
Characteristic vibration patterns of odor compounds from bread-baking volatiles upon protein binding: density functional and ONIOM study and principal component analysis. J Mol Model 2011; 18:2227-40. [DOI: 10.1007/s00894-011-1227-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
20
|
A systematical comparison of DFT methods in reproducing the interaction energies of halide series with protein moieties. J Mol Model 2011; 18:2079-98. [DOI: 10.1007/s00894-011-1232-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
21
|
Scheiner S. Weak H-bonds. Comparisons of CH···O to NH···O in proteins and PH···N to direct P···N interactions. Phys Chem Chem Phys 2011; 13:13860-72. [PMID: 21573303 DOI: 10.1039/c1cp20427k] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whereas CH···O H-bonds are usually weaker than interpeptide NH···O H-bonds, this is not necessarily the case within proteins. The nominally weaker CH···O are surprisingly strong, comparable to, and in some cases stronger than, the NH···O H-bonds in the context of the forces that hold together the adjacent strands in protein β-sheets. The peptide NH is greatly weakened as proton donor in certain conformations of the protein backbone, particularly extended structures, and forms correspondingly weaker H-bonds. The PH group is a weak proton donor, but will form PH···N H-bonds. However, there is a stronger interaction in which P can engage, in which the P atom, not the H, directly approaches the N electron donor to establish a direct P···N interaction. This approach is stabilized by the same sort of electron transfer from the N lone pair to the P-H σ* antibond that characterizes the PH···N H-bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
22
|
Sałdyka M, Mielke Z, Mierzwicki K, Coussan S, Roubin P. CH stretching vibration of N-methylformamide as a sensitive probe of its complexation: infrared matrix isolation and computational study. Phys Chem Chem Phys 2011; 13:13992-4002. [DOI: 10.1039/c1cp20743a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Veljković DŽ, Janjić GV, Zarić SD. Are C–H⋯O interactions linear? The case of aromatic CH donors. CrystEngComm 2011. [DOI: 10.1039/c1ce05065f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Cooperativity of multiple H-bonds in influencing structural and spectroscopic features of the peptide unit of proteins. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2009.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Wang CS, Sun CL. Investigation on the individual contributions of N-H...O=C and C-H...O=C interactions to the binding energies of beta-sheet models. J Comput Chem 2010; 31:1036-44. [PMID: 19821516 DOI: 10.1002/jcc.21390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this article, the binding energies of 16 antiparallel and parallel beta-sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for beta-sheet models. Further comparisons suggest that the binding energy of the beta-sheet models might come mainly from dipole-dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole-dipole attractive and repulsive interactions are further obtained in this article. The total of N-H...H-N and C=O...O=C dipole-dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel beta-sheet models is estimated to be about 6.0 kcal/mol. The individual N-H...O=C dipole-dipole attractive interaction is predicted to be -6.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -5.2 +/- 0.6 kcal/mol in the parallel beta-sheet models. The individual C(alpha)-H...O=C attractive interaction is -1.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -1.5 +/- 0.2 kcal/mol in the parallel beta-sheet models. These values are important in understanding the interactions at protein-protein interfaces and developing a more accurate force field for peptides and proteins.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | | |
Collapse
|
26
|
Psachoulia E, Marshall DP, Sansom MSP. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices. Acc Chem Res 2010; 43:388-96. [PMID: 20017540 DOI: 10.1021/ar900211k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Membrane proteins account for nearly a quarter of all genes, but their structure and function remain incompletely understood. Most membrane proteins have transmembrane (TM) domains made up of bundles of hydrophobic alpha-helices. The lateral association of TM helices within the lipid bilayer is a key stage in the folding of membrane proteins. It may also play a role in signaling across cell membranes. Dimerization of TM helices is a simple example of such lateral association. Molecular dynamics (MD) simulations have been used for over a decade to study membrane proteins in a lipid bilayer environment. However, direct atomistic (AT) MD simulation of self-assembly of a TM helix bundle remains challenging. AT-MD may be complemented by coarse-grained (CG) simulations, in which small numbers of atoms are grouped together into particles. In this Account, we demonstrate how CG-MD may be used to simulate formation of dimers of TM helices. We also show how a serial combination of CG and AT simulation provides a multiscale approach for generating and refining models of TM helix dimers. The glycophorin A (GpA) TM helix dimer represents a paradigm for helix-helix packing, mediated by a GxxxG sequence motif. It is well characterized experimentally and so is a good test case for evaluating computational methods. CG-MD simulations in which two separate TM helices are inserted in a lipid bilayer result in spontaneous formation of a right-handed GpA dimer, in agreement with NMR structures. CG-MD models were evaluated via comparison with data on destabilizing mutants of GpA. Such mutants increased the conformational flexibility and the dissociation constants of helix dimers. GpA dimers have been used to evaluate a multiscale approach: A CG model is converted to an AT model, which is used as the basis of an AT-MD simulation. Comparison of three AT-MD simulations of GpA, one starting from a CG model and two starting from NMR structures, leads to convergence to a common refined structure for the dimer. CG-MD self-assembly has also been used to model dimerization of the TM domain of the syndecan-2 receptor protein. This TM helix contains a GxxxG motif, which mediates right-handed helix packing comparable to that of the GxxxG motif in GpA. The multiscale approach has been applied to a more complex system, the heterodimeric alphaIIb/beta3 integrin TM helix dimer. In CG-MD, both right-handed and left-handed structures were formed. Subsequent AT-MD simulations showed that the right-handed structure was more stable, yielding a dimer in which the GxxxG motif of the alphaIIb TM helix packed against a hydrophobic surface of the beta3 helix in a manner comparable to that observed in two recent NMR studies. This work demonstrates that the multiscale simulation approach can be used to model simple membrane proteins. The method may be applied to more complex proteins, such as the influenza M2 channel protein. Future refinements, such as extending the multiscale approach to a wider range of scales (from CG through QM/MM simulations, for example), will expand the range of applications and the accuracy of the resultant models.
Collapse
Affiliation(s)
- Emi Psachoulia
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - David P. Marshall
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Mark S. P. Sansom
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
27
|
Scheiner S. Identification of spectroscopic patterns of CH...O H-bonds in proteins. J Phys Chem B 2009; 113:10421-7. [PMID: 19575539 DOI: 10.1021/jp9035138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ab initio calculations are used to identify characteristics of vibrational and NMR spectra that signal the involvement of a protein backbone in a CH...O H-bond and that distinguish this sort of interaction from other H-bonds in which a protein might participate. Glycine and alanine dipeptides, in both their C7 and C5 minimum-energy structures, are paired with formamide in a number of different H-bonding arrangements. The CH...O H-bond is characterized by a small contraction of the C-H bond length, along with a blue shift in its stretching frequency, accompanied by an intensification of this vibrational band. In the context of NMR spectra, the bridging CH proton's chemical shift is moved downfield by 1-2 ppm. The aforementioned features are not produced by other H-bonds in which the protein backbone might participate, such as NH proton donation or accepting a proton via the peptide C=O.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
28
|
Mathieu S, Trinquier G. Appraising the relative strengths of C–H⋯OC and N–H⋯OC interactions from cis-N-methylacetamide multimers. Phys Chem Chem Phys 2009; 11:8183-90. [DOI: 10.1039/b908152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Vener MV, Egorova AN, Fomin DP, Tsirelson VG. Hierarchy of the non-covalent interactions in the alanine-based secondary structures. DFT study of the frequency shifts and electron-density features. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1445] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Scheiner S, Kar T. Spectroscopic and Structural Signature of the CH−O Hydrogen Bond. J Phys Chem A 2008; 112:11854-60. [DOI: 10.1021/jp806984g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| | - Tapas Kar
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| |
Collapse
|
31
|
Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:45-57. [PMID: 18603028 DOI: 10.1016/j.bbagrm.2008.06.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, and neurodegenerative disorders. Thus, it is important to fully understand the detailed kinetic and chemical mechanisms of these enzymes. Here, we review recent progress towards determining the mechanisms of histone lysine and arginine modifying enzymes. In particular, the mechanisms of S-adenosyl-methionine (AdoMet) dependent methyltransferases, FAD-dependent demethylases, iron dependent demethylases, acetyl-CoA dependent acetyltransferases, zinc dependent deacetylases, NAD(+) dependent deacetylases, and protein arginine deiminases are covered. Particular attention is paid to the conserved active-site residues necessary for catalysis and the individual chemical steps along the catalytic pathway. When appropriate, areas requiring further work are discussed.
Collapse
Affiliation(s)
- Brian C Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|