1
|
Libál A, Stepanov S, Reichhardt C, Reichhardt CJO. Dynamic phases and combing effects for elongated particles moving over quenched disorder. SOFT MATTER 2023; 19:7937-7943. [PMID: 37814545 DOI: 10.1039/d3sm01034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We consider a two-dimensional system of elongated particles driven over a landscape containing randomly placed pinning sites. For varied pinning site density, external drive magnitude, and particle elongation, we find a wide variety of dynamic phases, including random structures, stripe or combed phases with nematic order, and clogged states. The different regimes can be identified by examining nematic ordering, cluster size, number of pinned particles, and transverse diffusion. In some regimes we find that the pinning can enhance the particle alignment, producing a nonmonotonic signature in the nematic ordering with a maximum at a particular combination of pinning density and drive. The optimal nematic occurs when a sufficient number of particles can be pinned, generating a local shear and leading to what we call a combing effect. At high drives, the combing effect is reduced when the number of pinned particles decreases. For stronger pinning, the particles form a heterogeneous clustered or clogged state that depins into a fluctuating state with high diffusion.
Collapse
Affiliation(s)
- A Libál
- Mathematics and Computer Science Department, Babes-Bolyai University, Cluj 400084, Romania
| | - S Stepanov
- Physics Department, Babes-Bolyai University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
2
|
Nakai F, Kröger M, Ishida T, Uneyama T, Doi Y, Masubuchi Y. Increase in rod diffusivity emerges even in Markovian nature. Phys Rev E 2023; 107:044604. [PMID: 37198810 DOI: 10.1103/physreve.107.044604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
Rod-shaped particles embedded in certain matrices have been reported to exhibit an increase in their center of mass diffusivity upon increasing the matrix density. This increase has been considered to be caused by a kinetic constraint in analogy with tube models. We investigate a mobile rodlike particle in a sea of immobile point obstacles using a kinetic Monte Carlo scheme equipped with a Markovian process, that generates gaslike collision statistics, so that such kinetic constraints do essentially not exist. Even in such a system, provided the particle's aspect ratio exceeds a threshold value of about 24, the unusual increase in the rod diffusivity emerges. This result implies that the kinetic constraint is not a necessary condition for the increase in the diffusivity.
Collapse
Affiliation(s)
- Fumiaki Nakai
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
- Magnetism and Interface Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Takato Ishida
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yuya Doi
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yuichi Masubuchi
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Kumar P, Theeyancheri L, Chakrabarti R. Chemically symmetric and asymmetric self-driven rigid dumbbells in a 2D polymer gel. SOFT MATTER 2022; 18:2663-2671. [PMID: 35311848 DOI: 10.1039/d1sm01820e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Hernandez R. A Cuban Campesino in Chemistry's Academic Court. J Phys Chem B 2021; 125:8261-8267. [PMID: 34313115 DOI: 10.1021/acs.jpcb.1c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Leitmann S, Höfling F, Franosch T. Dynamically crowded solutions of infinitely thin Brownian needles. Phys Rev E 2018; 96:012118. [PMID: 29347251 DOI: 10.1103/physreve.96.012118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the density-dependent behavior of the orientational and translational diffusion, we extract the long-time transport coefficients and the geometry of the confining tube. The sliding motion within the tube becomes visible in the non-Gaussian parameter of the translational motion as an extended plateau at intermediate times and in the intermediate scattering function as an algebraic decay. This transient dynamic arrest is also corroborated by the local exponent of the mean-square displacements perpendicular to the needle axis. Moreover, the probability distribution of the displacements perpendicular to the needle becomes strongly non-Gaussian; rather, it displays an exponential distribution for large displacements. On the other hand, based on the analysis of higher-order correlations of the orientation we find that the rotational motion becomes diffusive again for strong confinement. At coarse-grained time and length scales, the spatiotemporal dynamics of the needle for the high entanglement is captured by a single freely diffusing phantom needle with long-time transport coefficients obtained from the needle in solution. The time-dependent dynamics of the phantom needle is also assessed analytically in terms of spheroidal wave functions. The dynamic behavior of the needle in solution is found to be identical to needle Lorentz systems, where a tracer needle explores a quenched disordered array of other needles.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Khalilian H, Fazli H. Obstruction enhances the diffusivity of self-propelled rod-like particles. J Chem Phys 2016; 145:164909. [DOI: 10.1063/1.4966188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Leitmann S, Höfling F, Franosch T. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time. PHYSICAL REVIEW LETTERS 2016; 117:097801. [PMID: 27610885 DOI: 10.1103/physrevlett.117.097801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Kasimov D, Admon T, Roichman Y. Diffusion of a nanowire rod through an obstacle field. Phys Rev E 2016; 93:050602. [PMID: 27300819 DOI: 10.1103/physreve.93.050602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 06/06/2023]
Abstract
We report the experimental realization of a rod diffusing in a two-dimensional obstacle field following the single rod dynamics. We use a silver nanowire as our rod and two types of obstacles: repelling light beams and polymer pillars. We study the effect of hydrodynamic interactions on the transport of the rod, comparing both experimental realizations and recent simulations. We propose a framework for analyzing the transport through such systems, and we predict a new superdiffusive regime of rod transport at high obstacle concentration and short times.
Collapse
Affiliation(s)
- Dror Kasimov
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Admon
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Roichman
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Hernandez R, Popov AV. Molecular dynamics out of equilibrium: mechanics and measurables. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA USA
| | - Alexander V. Popov
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
11
|
Kaufman LJ. Heterogeneity in Single-Molecule Observables in the Study of Supercooled Liquids. Annu Rev Phys Chem 2013; 64:177-200. [DOI: 10.1146/annurev-physchem-040412-110033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bulk approaches to studying heterogeneous systems obscure important details, as they report average behavior rather than the distribution of behaviors in such environments. Small-molecule and polymeric supercooled liquids, which display heterogeneity in their dynamics without an underlying structural heterogeneity that sets those dynamics, are important constituents of this category of condensed matter systems. A variety of approaches have been devised to unravel ensemble averaging in supercooled liquids. This review focuses on the ultimate subensemble approach, single-molecule measurements, as they have been applied to the study of supercooled liquids. We detail how three key experimental observables (single-molecule probe rotation, translation, and fluorescence lifetime) have been employed to provide detail on dynamic heterogeneity in supercooled liquids. Special attention is given to the potential for, but also the challenges in, discriminating spatial and temporal heterogeneity and detailing the length scales and timescales of heterogeneity in these systems.
Collapse
Affiliation(s)
- Laura J. Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
12
|
Hagy MC, Hernandez R. Dynamical simulation of dipolar Janus colloids: Equilibrium structure and thermodynamics. J Chem Phys 2012; 137:044505. [DOI: 10.1063/1.4737432] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Tucker AK, Hernandez R. Diffusion of a Spherical Probe through Static Nematogens: Effect of Increasing Geometric Anisotropy and Long-Range Structure. J Phys Chem B 2011; 116:1328-34. [DOI: 10.1021/jp207346j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashley K. Tucker
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
14
|
Mackowiak SA, Noble JM, Kaufman LJ. Manifestations of probe presence on probe dynamics in supercooled liquids. J Chem Phys 2011; 135:214503. [PMID: 22149798 DOI: 10.1063/1.3664125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental studies that follow behavior of single probes embedded in heterogeneous systems are increasingly common. The presence of probes may perturb the system, and such perturbations may or may not affect interpretation of host behavior from the probe observables typically measured. In this study, the manifestations of potential probe-induced changes to host dynamics in supercooled liquids are investigated via molecular dynamics simulations. It is found that probe dynamics do not necessarily mirror host dynamics as they exist either in the probe-free or probe-bearing systems. In particular, for a binary supercooled liquid, we find that smooth probes larger than the host particles induce increased translational diffusion in the host system; however, the diffusion is anisotropic and enhances caging of the probe, suppressing probe translational diffusion. This in turn may lead experiments that follow probe diffusion to suggest Stokes-Einstein behavior of the system even while both the probe-free and probe-bearing systems exhibit deviations from that behavior.
Collapse
|
15
|
Tucker AK, Hernandez R. Absence of Enhanced Diffusion in the Dynamics of a Thick Needle through Three-Dimensional Fixed Spherical Scatterers. J Phys Chem B 2011; 115:4412-8. [DOI: 10.1021/jp201867f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ashley K. Tucker
- Center for Computational and Molecular Science and Technology,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|