1
|
Chen S, Morrison G, Liu W, Kaur A, Chen R. A pH-responsive, endosomolytic liposome functionalized with membrane-anchoring, comb-like pseudopeptides for enhanced intracellular delivery and cancer treatment. Biomater Sci 2022; 10:6718-6730. [DOI: 10.1039/d2bm01087a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low intracellular delivery efficiency and multidrug resistance are among major barriers to effective cancer therapy.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 212000, China
| | - Gabriella Morrison
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Wenyuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 212000, China
| | - Apanpreet Kaur
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics 2021; 13:pharmaceutics13081240. [PMID: 34452201 PMCID: PMC8400054 DOI: 10.3390/pharmaceutics13081240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/01/2022] Open
Abstract
Radiation crosslinking was employed to obtain nanocarriers based on poly(acrylic acid)—PAA—for targeted delivery of radioactive isotopes. These nanocarriers are internally crosslinked hydrophilic macromolecules—nanogels—bearing carboxylic groups to facilitate functionalization. PAA nanogels were conjugated with an engineered bombesin-derivative—oligopeptide combined with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelating moiety, aimed to provide selective radioligand transport. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) toluene-4-sulfonate was used as the coupling agent. After tests on a model amine—p-toluidine—both commercial and home-synthesized DOTA-bombesin were successfully coupled to the nanogels and the obtained products were characterized. The radiolabeling efficiency of nanocarriers with 177Lu, was chromatographically tested. The results provide a proof of concept for the synthesis of radiation-synthesized nanogel-based radioisotope nanocarriers for theranostic applications.
Collapse
|
3
|
Farias BV, Haeri F, Khan SA. Linking polymer hydrophobicity and molecular interactions to rheology and tribology in phospholipid-containing complex gels. J Colloid Interface Sci 2021; 584:134-144. [PMID: 33069013 DOI: 10.1016/j.jcis.2020.09.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The rheological behavior and frictional properties (macroscopic level) of systems containing a hydrophobically modified polymer and phospholipids depend on the hydrophobic association that occur between the hydrophobic moiety of the polymer and the phospholipid tails (molecular level). The hydrophobicity of the polymer can thus be used to control its interactions with phospholipids, and manipulate complex gel macroscopic behavior. EXPERIMENTS By using systems composed of a crosslinked hydrophobically modified polyacrylic acid (HMPAA) or a crosslinked polyacrylic acid polymer (PAA) and phospholipids, we examine the underlying mechanisms through which the components interact using isothermal titration calorimetry (ITC) and their effect on rheological and tribological characteristics of complex gels. FINDINGS We find the systems containing HMPAA and phospholipid exhibit gel-like behavior with the elastic modulus increasing substantially upon phospholipid addition due to hydrophobic interactions that result in a more interconnected network formation, as evidenced by ITC measurements. Similar experiments with a crosslinked polyacrylic acid polymer (PAA) show no interactions, lending credence to our hypothesis. In addition, soft tribological behavior shows lower friction coefficients at low entrainment speeds with HMPAA concentration and the addition of phospholipid, while no change in friction coefficient was observed in the case of increasing PAA concentration, indicating HMPAA and phospholipids to be interacting with the soft PDMS contacts.
Collapse
Affiliation(s)
- Barbara V Farias
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Farrah Haeri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
4
|
Naziris N, Pippa N, Meristoudi A, Pispas S, Demetzos C. Design and development of pH-responsive HSPC:C 12H 25-PAA chimeric liposomes. J Liposome Res 2017; 27:108-117. [PMID: 27558454 DOI: 10.3109/08982104.2016.1166512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/13/2016] [Indexed: 01/07/2023]
Abstract
The application of stimuli-responsive medical practices has emerged, in which pH-sensitive liposomes figure prominently. This study investigates the impact of the incorporation of different amounts of pH-sensitive polymer, C12H25-PAA (poly(acrylic acid) with a hydrophobic end group) in l-α-phosphatidylcholine, hydrogenated (Soy) (HSPC) phospholipidic bilayers, with respect to biomimicry and functionality. PAA is a poly(carboxylic acid) molecule, classified as a pH-sensitive polymer, whose pH-sensitivity is attributed to its regulative -COOH groups, which are protonated under acidic pH (pKa ∼4.2). Our concern was to fully characterize, in a biophysical and thermodynamical manner, the mixed nanoassemblies arising from the combination of the two biomaterials. At first, we quantified the physicochemical characteristics and physical stability of the prepared chimeric nanosystems. Then, we studied their thermotropic behavior, through measurement of thermodynamical parameters, using Differential Scanning Calorimetry (DSC). Finally, the loading and release of indomethacin (IND) were evaluated, as well as the physicochemical properties and stability of the nanocarriers incorporating it. As expected, thermodynamical findings are in line with physicochemical results and also explain the loading and release profiles of IND. The novelty of this investigation is the utilization of these pH-sensitive chimeric advanced Drug Delivery nano Systems (aDDnSs) in targeted drug delivery which relies entirely on the biophysics and thermodynamics between such designs and the physiological membranes and environment of living organisms.
Collapse
Affiliation(s)
- Nikolaos Naziris
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
| | - Natassa Pippa
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Anastasia Meristoudi
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Stergios Pispas
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Costas Demetzos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
| |
Collapse
|
5
|
Ozer BBP, Uz M, Oymaci P, Altinkaya SA. Development of a novel strategy for controlled release of lysozyme from whey protein isolate based active food packaging films. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Chen S, Chen R. A Virus-Mimicking, Endosomolytic Liposomal System for Efficient, pH-Triggered Intracellular Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22457-22467. [PMID: 27512894 DOI: 10.1021/acsami.6b05041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel multifunctional liposomal delivery platform has been developed to resemble the structural and functional traits of an influenza virus. Novel pseudopeptides were prepared to mimic the pH-responsive endosomolytic behavior of influenza viral peptides through grafting a hydrophobic amino acid, l-phenylalanine, onto the backbone of a polyamide, poly(l-lysine isophthalamide), at various degrees of substitution. These pseudopeptidic polymers were employed to functionalize the surface of cholesterol-containing liposomes that mimic the viral envelope. By controlling the cholesterol proportion as well as the concentration and amphiphilicity of the pseudopeptides, the entire payload was rapidly released at endosomal pHs, while there was no release at pH 7.4. A pH-triggered, reversible change in liposomal size was observed, and the release mechanism was elucidated. In addition, the virus-mimicking nanostructures efficiently disrupted the erythrocyte membrane at pH 6.5 characteristic of early endosomes, while they showed negligible cytotoxic effects at physiological pH. The efficient intracellular delivery of the widely used anticancer drug doxorubicin (DOX) by the multifunctional liposomes was demonstrated, leading to significantly increased potency against HeLa cancer cells over the DOX-loaded bare liposomes. This novel virus-mimicking liposomal system, with the incorporated synergy of efficient liposomal drug release and efficient endosomal escape, is favorable for efficient intracellular drug delivery.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Munavirov BV, Filippov AV, Rudakova MA, Antzutkin ON. Polyacrylic Acid Modifies Local and Lateral Mobilities in Lipid Membranes. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.823096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Munavirov B, Gnezdilov O, Rudakova M, Antzutkin ON, Filippov A. Interaction of polyacrylic acid with lipid bilayers: effect of polymer mass. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:750-755. [PMID: 25939341 DOI: 10.1002/mrc.4013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/04/2023]
Abstract
Polyanion-coated lipid vesicles are proposed to have an appreciable potential for drug delivery because of their ability to control the permeability of lipid bilayers by environmental parameters such as pH and temperature. However, details of the interaction of this class of polymers with lipids and their mechanisms of induced permeability are still being debated. In this work, we applied (1)H NOESY to study details of the interaction of polyacrylic acid (PAA) fractions of molecular weights 5 and 240 kDa with dimyristoylphosphatidylcholine vesicles. We showed that PAA of two different molecular masses modifies lipid bilayers increasing disorder and probability of close contact between polar and hydrophobic groups. PAA molecules adsorb near the interface of lipid bilayers but do not penetrate into the hydrophobic core of the bilayer and, thus, cannot participate in formation of transbilayer channels, proposed in earlier works. Increasing the molecular mass of PAA from 5 kDa to 240 kDa does not change the effect of PAA on the bilayer, although PAA240 forms a more compact structure (either intra-molecular or inter-molecular) and interacts more strongly with interface lipid protons.
Collapse
|
9
|
Menger FM. Remembrances of self-assemblies past. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5176-5183. [PMID: 20945842 DOI: 10.1021/la103268d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Research on four types of self-assemblies (micelles, coacervates, gels, and vesicles) is discussed via a particular investigative methodology (in order of appearance): kinetics, dynamic NMR, PGSE-NMR, double-(13)C labeling, molecular dynamics computations, phase diagrams, cryo-HRSEM, rheology, light/electron microscopy, electrophoretic mobility, electroformation, confocal microscopy, and calorimetry. The emphasis here is on how a given method, each in its own special way, illuminates a complex system.
Collapse
Affiliation(s)
- Fredric M Menger
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Filippov A, Munavirov B, Sparrman T, Ishmuhametova V, Rudakova M, Shriram P, Tavelin S. Interaction of a poly(acrylic acid) oligomer with dimyristoylphosphatidylcholine bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3754-3761. [PMID: 21395273 DOI: 10.1021/la200402k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ∼4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.
Collapse
Affiliation(s)
- Andrey Filippov
- Kazan (Volga Region) Federal University , 18 Kremlevskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
11
|
Chieng YY, Chen SB. Complexation of cationic polyelectrolyte with anionic phospholipid vesicles: Concentration, molecular weight and salt effects. J Colloid Interface Sci 2011; 354:226-33. [DOI: 10.1016/j.jcis.2010.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 11/16/2022]
|
12
|
Chieng YY, Chen SB. Rheological study of hydrophobically modified hydroxyethyl cellulose and phospholipid vesicles. J Colloid Interface Sci 2010; 349:236-45. [DOI: 10.1016/j.jcis.2010.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/15/2022]
|