1
|
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, Díaz SA. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. Methods Appl Fluoresc 2023; 11. [PMID: 36719011 PMCID: PMC10362908 DOI: 10.1088/2050-6120/acb2b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
Collapse
Affiliation(s)
- Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Joseph S Melinger
- Electronics Sciences and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Remi Veneziano
- Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| |
Collapse
|
2
|
Zakharova GV, Fedotova TV, Gutrov VN, Chibisov AK, Alfimov MV. Triplet Energy Transfer from Polymethine Dimers in the Complexes with Cucurbit[8]urils. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143919060158 10.1134/s0018143919060158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zakharova GV, Fedotova TV, Gutrov VN, Chibisov AK, Alfimov MV. Triplet Energy Transfer from Polymethine Dimers in the Complexes with Cucurbit[8]urils. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143919060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Xie Z, Stepanenko V, Radacki K, Würthner F. Chiral J-Aggregates of Atropo-Enantiomeric Perylene Bisimides and Their Self-Sorting Behavior. Chemistry 2012; 18:7060-70. [DOI: 10.1002/chem.201200089] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/16/2012] [Indexed: 11/05/2022]
|
6
|
Teixeira R, Andrade SM, Vaz Serra V, Paulo PMR, Sánchez-Coronilla A, Neves MGPMS, Cavaleiro JAS, Costa SMB. Reorganization of self-assembled dipeptide porphyrin J-aggregates in water-ethanol mixtures. J Phys Chem B 2012; 116:2396-404. [PMID: 22292964 DOI: 10.1021/jp2115719] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The self-assembly of a neutral meso-methoxyphenylporphyrin functionalized with a dipeptide glycilglycine substituent (MGG) in water and in water-ethanol mixtures was studied by absorption and fluorescence spectroscopy. In water, hydrophobic interactions and the noncovalent intermolecular hydrogen bonding between the terminal carboxylate group of one porphyrin and the hydrogen atoms of the pyrrolic nitrogens of another porphyrin originate nonspecific disorganized H- and J-aggregates. The addition of ethanol (0.1-25% v/v) to the water creates small clusters within which porphyrin J-aggregates reorganize as revealed by a narrow intense band detected by the Rayleigh light scattering (RLS) at 443 nm. Similar phenomenology is detected in SDS premicellar aggregates. Computational DFT calculations of a model dimer formation stabilized via intermolecular hydrogen bonding estimate an energy gain of -22 kJ mol(-1) and a center-to-center and interplane distances between porphyrin moieties of 16.8 and 3.7 Å, respectively. The kinetics of the J-aggregate formation could be fitted with a time-dependent model, and an activation energy of 96 kJ mol(-1) was estimated. The aggregate's morphology of MGG was followed by transmission electron microscopy (TEM) which showed rod-type structures of 5-8 μm evolving to spherical particles with increased ethanol content. Similar images and sizes were obtained in analogous samples using fluorescence lifetime imaging microscopy (FLIM) and dynamic light scattering (DLS). The formation of excitonically coupled supramolecular MGG structures of brickwork or staircase types is proposed in these water-ethanol mixtures.
Collapse
Affiliation(s)
- Raquel Teixeira
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao JS, Ruan YB, Zhou R, Jiang YB. Memory of chirality in J-type aggregates of an achiral perylene dianhydride dye created in a chiral asymmetric catalytic synthesis. Chem Sci 2011. [DOI: 10.1039/c1sc00043h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|