1
|
Arakawa M, Kono S, Sekine Y, Terasaki A. Reaction of size-selected iron-oxide cluster cations with methane: a model study of rapid methane loss in Mars' atmosphere. Phys Chem Chem Phys 2024; 26:14684-14690. [PMID: 38716515 DOI: 10.1039/d4cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
We report gas-phase reactions of free iron-oxide clusters, FenOm+, and their Ar adducts with methane in the context of chemical processes in Mars' atmosphere. Methane activation was observed to produce FenOmCH2+/FenOmCD2+ and FenOmC+, where the reactivity exhibited size and composition dependence. For example, the rate coefficients of methane activation for Fe3O+ and Fe4O+ were estimated to be 1 × 10-13 and 3 × 10-13 cm3 s-1, respectively. Based on these reaction rate coefficients, the presence of iron-oxide clusters/particles with a density as low as 107 cm-3 in Mars' atmosphere would explain the rapid loss of methane observed recently by the Curiosity rover.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Satoshi Kono
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Guo M, Zhou S, Sun X. Room-Temperature Conversion of Methane to Methanediol by [FeO 2] . J Phys Chem Lett 2023; 14:1633-1640. [PMID: 36752636 DOI: 10.1021/acs.jpclett.2c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inspired by the activities of P-450 enzyme and Rieske oxygenases in nature, in which the high-valent Fe-oxo complexes play a key role for oxidation of alkanes, the oxidation process of methane by the high-valent iron oxide cation [FeO2]+ has been explored by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously reported [FeO]+/CH4 and [Fe(O)OH]+/CH4 systems, which afford [FeOH]+ as the main product, the generation of Fe+ dominates the reaction of [FeO2]+ with CH4. Theoretical calculations suggest a novel "oxygen rebound" pathway for the liberation of methanediol. In particular, the inevitable valence increase of Fe prior to C-H activation is similar to the cytochrome P-450 mediated processes. To our best knowledge, this study provides the first example of methane activation by the high-valent Fe(V)-oxo species in the gas phase, which may thus bridge the gas-phase model and the condensed-phase biosystems.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, Zheda Road No. 99, Quzhou 324000, China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
3
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
4
|
Viggiano AA, Ard SG, Shuman NS. Temperature and energy dependences of ion-molecule reactions: Studies inspired by Diethard Böhme. MASS SPECTROMETRY REVIEWS 2022; 41:568-592. [PMID: 34159628 DOI: 10.1002/mas.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Diethard Böhme has had a long career covering many topics in ion-molecule reactivity. In this review, we describe the work done at the Air Force Research Laboratory (and its variously named preceding organizations) that was inspired by his studies. These fall into two main areas: nucleophilic displacement (SN 2) and metal cation chemistry. In SN 2 chemistry, we revisited many of the reactions Diethard pioneered and studied them in more detail. We found nonstatistical behavior, both competition and noncompetition between multiple channels. New channels were found as hydration occurred, with more solution-like behavior occurring as only a few ligands were added. Temperature-dependent studies revealed details that were not observable at room temperature. These and other highlights will be discussed. In metal cation reactions, Diethard's use of an inductively coupled ion source allowed him to systematically study the periodic table of elements with a number of simple neutrals. We have taken the most interesting of these and studied them in greater detail. In doing so, we were able to identify curve crossing rates, in a few instances information about product states, and the importance of multiple entrance channels.
Collapse
Affiliation(s)
- Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Sweeny BC, Pan H, Ard SG, Shuman NS, Viggiano AA. On the Role of Hydrogen Atom Transfer (HAT) in Thermal Activation of Methane by MnO+: Entropy vs. Energy. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The temperature dependent kinetics and product branching fractions of first-row transition metal oxide cation MnO+ with CH4 and CD4 at temperatures between 200 and 600 K are measured using a selected-ion flow tube apparatus. Likely reaction mechanisms are determined by comparison of temperature dependent kinetics to statistical modeling along calculated reaction coordinates. The data is well-modeled with the reaction proceeding over a rate limiting four-centered transition state leading to an insertion intermediate, similar to reactions of NiO+ and FeO+, and showing characteristics of proton-coupled electron transfer (PCET). However, a more direct pathway traversing a transition state of hydrogen atom transfer (HAT) character to a hydroxyl intermediate is found to possibly be competitive, especially with increasing temperature. While uncertainties in calculated energetics limit quantitative assessment of the role of HAT at thermal energies, it is clear that this mechanism becomes increasingly prevalent in higher energy regimes.
Collapse
Affiliation(s)
- Brendan C. Sweeny
- NRC postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Hanqing Pan
- USRA Space Scholar at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Shaun G. Ard
- Institute for Scientific Research, Boston College , Boston, MA 02467 , USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , USA
| |
Collapse
|
6
|
Cao W, Zhang Y, Nyambo S, Yang DS. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—H and C—C bond activation of 1-pentene and 2-pentene. J Chem Phys 2018; 149:034303. [DOI: 10.1063/1.5022771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Silver Nyambo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
7
|
Cao W, Hewage D, Yang DS. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene. J Chem Phys 2018; 148:194302. [PMID: 30307187 DOI: 10.1063/1.5026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C-C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.
Collapse
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dilrukshi Hewage
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
8
|
Cao W, Hewage D, Yang DS. Lanthanum-mediated dehydrogenation of butenes: Spectroscopy and formation of La(C4H6) isomers. J Chem Phys 2018; 148:044312. [DOI: 10.1063/1.5017615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dilrukshi Hewage
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
9
|
Gani TZH, Kulik HJ. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics. J Chem Theory Comput 2017; 13:5443-5457. [DOI: 10.1021/acs.jctc.7b00848] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Terry Z. H. Gani
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Cao W, Hewage D, Yang DS. Lanthanum-mediated dehydrogenation of 1- and 2-butynes: Spectroscopy and formation of La(C4H4) isomers. J Chem Phys 2017; 147:064303. [DOI: 10.1063/1.4997567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dilrukshi Hewage
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
11
|
Wang Y, Sun X, Zhang J, Li J. A Theoretical Study on Methane C—H Bond Activation by Bare [FeO]+/0/–. J Phys Chem A 2017; 121:3501-3514. [DOI: 10.1021/acs.jpca.6b13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Wang
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xiaoli Sun
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Jun Zhang
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jilai Li
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s Republic of China
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Schwarz H. Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02658c] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genuine, single-atom catalysis can be realized in the gas phase and probed by mass spectrometry combined with computational chemistry.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
13
|
Cooperative Effects in Clusters and Oligonuclear Complexes of Transition Metals in Isolation. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2016_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Sun X, Zhou S, Schlangen M, Schwarz H. Efficient Room-Temperature Methane Activation by the Closed-Shell, Metal-Free Cluster [OSiOH]+
: A Novel Mechanistic Variant. Chemistry 2016; 22:14257-63. [DOI: 10.1002/chem.201601981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
15
|
Roithová J, Gray A, Andris E, Jašík J, Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc Chem Res 2016; 49:223-30. [PMID: 26821086 DOI: 10.1021/acs.accounts.5b00489] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore implemented two-color experiments where one laser is employed to selectively deplete a mixture by one (or more) isomer allowing helium tagging IRPD spectra of the remaining isomer(s) to be recorded via the second laser. Our experimental setup, based on a linear wire quadrupole ion trap, allows us to deplete almost 100% of all helium tagged ions in the trap. Using this special feature, we have developed attenuation experiments for determination of absolute photofragmentation cross sections. At the same time, this approach can be used to estimate the representation of isomers in a mixture. The ultimate aim is the routine use of this instrument and technique to study a wide range of reaction intermediates in catalysis. To this end, we present a study of hypervalent iron(IV)-oxo complexes ([(L)Fe(O)(NO3)](+)). We show that we can spectroscopically differentiate iron complexes with S = 1 and S = 2 according to the stretching vibrations of a nitrate counterion.
Collapse
Affiliation(s)
- Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Andrew Gray
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Dieter Gerlich
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
16
|
Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu(II) complex of N,N′-disalicylidene-2,3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jašík J, Navrátil R, Němec I, Roithová J. Infrared and Visible Photodissociation Spectra of Rhodamine Ions at 3 K in the Gas Phase. J Phys Chem A 2015; 119:12648-55. [DOI: 10.1021/acs.jpca.5b08462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juraj Jašík
- Department of Organic Chemistry and †Department of Inorganic
Chemistry, Faculty
of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry and †Department of Inorganic
Chemistry, Faculty
of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Ivan Němec
- Department of Organic Chemistry and †Department of Inorganic
Chemistry, Faculty
of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry and †Department of Inorganic
Chemistry, Faculty
of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| |
Collapse
|
18
|
Kocak A, Ashraf MA, Metz RB. Vibrational Spectroscopy Reveals Varying Structural Motifs in Cu+(CH4)n and Ag+(CH4)n (n = 1–6). J Phys Chem A 2015; 119:9653-65. [DOI: 10.1021/acs.jpca.5b07079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdulkadir Kocak
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant
Street, Amherst, Massachusetts 01003, United States
| | - Muhammad Affawn Ashraf
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant
Street, Amherst, Massachusetts 01003, United States
| | - Ricardo B. Metz
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant
Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Mai BK, Kim Y. The Kinetic Isotope Effect as a Probe of Spin Crossover in the CH Activation of Methane by the FeO+Cation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Mai BK, Kim Y. The Kinetic Isotope Effect as a Probe of Spin Crossover in the CH Activation of Methane by the FeO+Cation. Angew Chem Int Ed Engl 2015; 54:3946-51. [DOI: 10.1002/anie.201411309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/08/2015] [Indexed: 11/09/2022]
|
21
|
Impeng S, Khongpracha P, Sirijaraensre J, Jansang B, Ehara M, Limtrakul J. Methane activation on Fe- and FeO-embedded graphene and boron nitride sheet: role of atomic defects in catalytic activities. RSC Adv 2015. [DOI: 10.1039/c5ra17984j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influence of supporting materials, graphene and boron nitride sheets, on the reactivity of Fe and FeO active species have been unravelled by using a dispersion-corrected DFT (PBE-D2) method.
Collapse
Affiliation(s)
- Sarawoot Impeng
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Pipat Khongpracha
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Jakkapan Sirijaraensre
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Bavornpon Jansang
- PTT Research and Technology Institute
- PTT Public Company Limited
- Ayutthaya 13170
- Thailand
| | | | - Jumras Limtrakul
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| |
Collapse
|
22
|
Schwarz H. How and Why Do Cluster Size, Charge State, and Ligands Affect the Course of Metal-Mediated Gas-Phase Activation of Methane? Isr J Chem 2014. [DOI: 10.1002/ijch.201300134] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Kocak A, Sallese Z, Johnston MD, Metz RB. Vibrational Spectroscopy of Co+(CH4)n and Ni+(CH4)n (n = 1–4). J Phys Chem A 2014; 118:3253-65. [DOI: 10.1021/jp500617n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdulkadir Kocak
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zachary Sallese
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Michael D. Johnston
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ricardo B. Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Ard SG, Melko JJ, Ushakov VG, Johnson R, Fournier JA, Shuman NS, Guo H, Troe J, Viggiano AA. Activation of Methane by FeO+: Determining Reaction Pathways through Temperature-Dependent Kinetics and Statistical Modeling. J Phys Chem A 2014; 118:2029-39. [DOI: 10.1021/jp5000705] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shaun G. Ard
- Air Force Research
Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117-5776, United States
| | - Joshua J. Melko
- Air Force Research
Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117-5776, United States
| | - Vladimir G. Ushakov
- Institute
of Problems
of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Max-Planck-Institut für Biophysikalische Chemie, D-37077 Göttingen, Germany
| | - Ryan Johnson
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Joseph A. Fournier
- Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas S. Shuman
- Air Force Research
Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117-5776, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jürgen Troe
- Max-Planck-Institut für Biophysikalische Chemie, D-37077 Göttingen, Germany
- Institut für
Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Albert A. Viggiano
- Air Force Research
Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117-5776, United States
| |
Collapse
|
25
|
Impeng S, Khongpracha P, Warakulwit C, Jansang B, Sirijaraensre J, Ehara M, Limtrakul J. Direct oxidation of methane to methanol on Fe–O modified graphene. RSC Adv 2014. [DOI: 10.1039/c3ra47826b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reaction mechanisms of the partial oxidation of methane to methanol over FeO/graphene are unraveled using an advanced DFT approach.
Collapse
Affiliation(s)
- Sarawoot Impeng
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical
| | - Pipat Khongpracha
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical
| | - Chompunuch Warakulwit
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical
| | - Bavornpon Jansang
- PTT Research and Technology Institute
- PTT Public Company Limited
- Wangnoi, Thailand
| | - Jakkapan Sirijaraensre
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science
- Okazaki 444-8585, Japan
| | - Jumras Limtrakul
- Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology
- Faculty of Science
- Kasetsart University
- Bangkok 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical
| |
Collapse
|
26
|
Xu B, Zhao YX, Ding XL, Liu QY, He SG. Collision-Induced Dissociation and Infrared Photodissociation Studies of Methane Adsorption on V5O12+ and V5O13+ Clusters. J Phys Chem A 2013; 117:2961-70. [DOI: 10.1021/jp401169p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Xu
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Xun-Lei Ding
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Qing-Yu Liu
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| |
Collapse
|
27
|
Gholami A, Fridgen TD. Dehydrogenation and demethanation of 2-methylpropane and propane in the gas-phase by the 16-electron complex [Ru(bipy)2(CO)]2+* chemically activated by the association of [Ru(bipy)2]2+ and CO. Dalton Trans 2013; 42:3979-85. [PMID: 23338825 DOI: 10.1039/c2dt32475j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of [Ru(bipy)(2)](2+) with 2-methylpropane, propane, and propene have been investigated in the ICR cell of a mass spectrometer. In these reactions, the association of one molecule of each hydrocarbon was observed. When [Ru(bipy)(2)](2+) was ligated with CO, and the newly formed [Ru(bipy)(2)(CO)](2+) was allowed to react with 2-methylpropane and propane both dehydrogenation and demethanation were observed among association and substitution products. Density functional calculations were used to help elucidate the mechanism and the energy requirement for the dehydrogenation and demethanation reactions of 2-methylpropane mediated by [Ru(bipy)(2)(CO)](2+)*. These very interesting elimination reactions of [Ru(bipy)(2)(CO)](2+) are attributed to a hot 16-electron intermediate, [Ru(bipy)(2)(CO)](2+)*, formed upon ligation of [Ru(bipy)(2)](2+) with CO which has no efficient means of dissipating its internal energy in the low-pressure confines of the ICR cell. The reactions were concluded to occur via a concerted elimination mechanism rather than by oxidative addition/reductive elimination following the dissociation of one Ru-N bond.
Collapse
Affiliation(s)
- Ameneh Gholami
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X7
| | | |
Collapse
|
28
|
Competitive activation of C–H and C–F bonds in gas phase reaction of Ir+ with CH3F: A DFT study. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kocak A, Austein-Miller G, Pearson WL, Altinay G, Metz RB. Dissociation Energy and Electronic and Vibrational Spectroscopy of Co+(H2O) and Its Isotopomers. J Phys Chem A 2012; 117:1254-64. [DOI: 10.1021/jp305673t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdulkadir Kocak
- Department of Chemistry, University of Massachusetts—Amherst, Amherst,
Massachusetts 01003, United States
| | - Geoff Austein-Miller
- Department of Chemistry, University of Massachusetts—Amherst, Amherst,
Massachusetts 01003, United States
| | - Wright L. Pearson
- Department of Chemistry, University of Massachusetts—Amherst, Amherst,
Massachusetts 01003, United States
| | - Gokhan Altinay
- Department of Chemistry, University of Massachusetts—Amherst, Amherst,
Massachusetts 01003, United States
| | - Ricardo B. Metz
- Department of Chemistry, University of Massachusetts—Amherst, Amherst,
Massachusetts 01003, United States
| |
Collapse
|
30
|
Asmis KR. Structure characterization of metal oxide clusters by vibrational spectroscopy: possibilities and prospects. Phys Chem Chem Phys 2012; 14:9270-81. [PMID: 22569919 DOI: 10.1039/c2cp40762k] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article summarizes the methodological progress that has been made in the vibrational spectroscopy of isolated polynuclear metal oxide clusters, with particular emphasis on free electron laser-based infrared action spectroscopy of gas phase clusters, over the last decade. The possibilities, limitations and prospects of the various experimental approaches are discussed using representative examples from pivotal studies in the field.
Collapse
Affiliation(s)
- Knut R Asmis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
| |
Collapse
|
31
|
Jašíková L, Hanikýřová E, Schröder D, Roithová J. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:460-465. [PMID: 22689621 DOI: 10.1002/jms.2963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic and Nuclear Chemistry, Charles University in Prague, Faculty of Science, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | | | | | | |
Collapse
|
32
|
Sun XL, Huang XR, Li JL, Huo RP, Sun CC. Mechanism Insights of Ethane C–H Bond Activations by Bare [FeIII═O]+: Explicit Electronic Structure Analysis. J Phys Chem A 2012; 116:1475-85. [DOI: 10.1021/jp2120302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiao-Li Sun
- State Key
Laboratory of Theoretical
and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Xu-Ri Huang
- State Key
Laboratory of Theoretical
and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Ji-Lai Li
- State Key
Laboratory of Theoretical
and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
- Department of Theoretical
Chemistry, Lund University,
Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Rui-Ping Huo
- State Key
Laboratory of Theoretical
and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Chia-Chung Sun
- State Key
Laboratory of Theoretical
and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| |
Collapse
|
33
|
Carsch KM, Cundari TR. DFT modeling of a methane-to-methanol catalytic cycle via Group 6 organometallics: The role of metal in determining the mode of C–H activation. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Li JL, Zhang X, Huang XR. Mechanism of benzenehydroxylation by high-valent bare FeivO2+: explicit electronic structure analysis. Phys Chem Chem Phys 2012; 14:246-56. [DOI: 10.1039/c1cp22187f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Schlangen M, Schwarz H. Probing elementary steps of nickel-mediated bond activation in gas-phase reactions: Ligand- and cluster-size effects. J Catal 2011. [DOI: 10.1016/j.jcat.2011.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Altinay G, Kocak A, Silva Daluz J, Metz RB. Electronic and vibrational spectroscopy of intermediates in methane-to-methanol conversion by CoO+. J Chem Phys 2011; 135:084311. [DOI: 10.1063/1.3626412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
|
38
|
Schwarz H. Chemistry with methane: concepts rather than recipes. Angew Chem Int Ed Engl 2011; 50:10096-115. [PMID: 21656876 DOI: 10.1002/anie.201006424] [Citation(s) in RCA: 501] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Indexed: 11/11/2022]
Abstract
Four seemingly simple transformations related to the chemistry of methane will be addressed from mechanistic and conceptual points of view: 1) metal-mediated dehydrogenation to form metal carbene complexes, 2) the hydrogen-atom abstraction step in the oxidative dimerization of methane, 3) the mechanisms of the CH(4)→CH(3)OH conversion, and 4) the initial bond scission (C-H vs. O-H) as well as the rate-limiting step in the selective CH(3)OH→CH(2)O oxidation. State-of-the-art gas-phase experiments, in conjunction with electronic-structure calculations, permit identification of the elementary reactions at a molecular level and thus allow us to unravel detailed mechanistic aspects. Where appropriate, these results are compared with findings from related studies in solution or on surfaces.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie der Technischen Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany.
| |
Collapse
|
39
|
Dietl N, van der Linde C, Schlangen M, Beyer MK, Schwarz H. Diatomic [CuO]+ and Its Role in the Spin-Selective Hydrogen- and Oxygen-Atom Transfers in the Thermal Activation of Methane. Angew Chem Int Ed Engl 2011; 50:4966-9. [DOI: 10.1002/anie.201100606] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Indexed: 11/10/2022]
|
40
|
Dietl N, van der Linde C, Schlangen M, Beyer MK, Schwarz H. Über die Rolle von [CuO]+ bei spinselektiven Wasserstoff- und Sauerstoff-Übertragungen in der Aktivierung von Methan. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100606] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Fedorov A, Couzijn EPA, Nagornova NS, Boyarkin OV, Rizzo TR, Chen P. Structure and Bonding of Isoleptic Coinage Metal (Cu, Ag, Au) Dimethylaminonitrenes in the Gas Phase. J Am Chem Soc 2010; 132:13789-98. [DOI: 10.1021/ja104649k] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey Fedorov
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Erik P. A. Couzijn
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Natalia S. Nagornova
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oleg V. Boyarkin
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Peter Chen
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Altinay G, Metz RB. Vibrational spectroscopy of intermediates in benzene-to-pheno conversion by FeO+. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:750-757. [PMID: 20181494 DOI: 10.1016/j.jasms.2010.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 05/28/2023]
Abstract
Gas-phase FeO(+) can convert benzene to phenol under thermal conditions. Two key intermediates of this reaction are the [HO-Fe-C(6)H(5)](+) insertion intermediate and Fe(+)(C(6)H(5)OH) exit channel complex. These intermediates are selectively formed by reaction of laser ablated Fe(+) with specific organic precursors and are cooled in a supersonic expansion. Vibrational spectra of the sextet and quartet states of the intermediates in the O-H stretching region are measured by infrared multiphoton dissociation (IRMPD). For Fe(+)(C(6)H(5)OH), the O-H stretch is observed at 3598 cm(-1). Photodissociation primarily produces Fe(+) + C(6)H(5)OH; Fe(+)(C(6)H(4)) + H(2)O is also observed. IRMPD of [HO-Fe-C(6)H(5)](+) mainly produces FeOH(+) + C(6)H(5) and the O-H stretch spectrum consists of a peak at approximately 3700 cm(-1) with a shoulder at approximately 3670 cm(-1). Analysis of the experimental results is aided by comparison with hybrid density functional theory computed frequencies. Also, an improved potential energy surface for the FeO(+) + C(6)H(6) reaction is developed based on CBS-QB3 calculations for the reactants, intermediates, transition states, and products.
Collapse
Affiliation(s)
- Gokhan Altinay
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|