1
|
Chen X, Li Y, Xie M, Hu Y. Growth mechanism of aromatic prebiotic molecules: insights from different processes of ion-molecule reactions in benzonitrile-ammonia and benzonitrile-methylamine clusters. Phys Chem Chem Phys 2024; 26:21548-21557. [PMID: 39082110 DOI: 10.1039/d4cp01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Benzonitrile (BN, C6H5CN) has been detected in the cold molecular cloud Taurus molecular cloud-1 (TMC-1) in 2018, which is suggested to be a precursor in the formation of more complex nitrogen-containing aromatic interstellar compounds. In this study, we utilized mass-selected infrared (IR) photodissociation spectroscopy and quantum chemical calculations to investigate the structures and gaseous ion-molecule reactions of benzonitrile-ammonia (BN-NH3) and benzonitrile-methylamine (BN-MA) clusters. The spectral observations indicate that the cyclic hydrogen bonding structure predominates in both neutral clusters. After VUV (118 nm) single-photon ionization, a new C-N covalent bond formed between BN and NH3 in the (BN-NH3)+ cluster. However, proton sharing constitutes the primary structure of the (BN-MA)+ cluster. The two nitrogen-containing interstellar molecules react with BN to yield distinct products due to difference in charge distribution and molecular polarity in the ionized clusters. The reactions of BN with other molecules contribute to our understanding of the growth mechanisms of complex interstellar molecules.
Collapse
Affiliation(s)
- Xutao Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yujian Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Xia X, Zhang H, Yu Y, Li J, Cheng Y, Xu P, Hu M, Guo J. Occurrence Mechanism of the Abnormal Gelation Phenomenon of High Temperature Cementing Slurry Induced by a Polycarboxylic Retarder. ACS OMEGA 2024; 9:9424-9431. [PMID: 38434821 PMCID: PMC10905580 DOI: 10.1021/acsomega.3c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
The class G oil well cement is a type of special cement that can be subjected to a high temperature formation environment. It was found that the class G cement tail slurry with a low polycarboxylic retarder dosage (usually ≤1% by weight of cement) was more prone to cause the abnormal gelation phenomenon (AGP) than the lead slurry with a high retarder dosage at a high temperature (usually when T ≥ 120 °C). This study aimed at the occurrence mechanism of this unfavorable phenomenon that seriously endangers the cementing security. Results showed that the abnormal gelatinous region underwent premature hydration; namely, the calcium hydroxide and calcium silicate hydrate (C-S-H) content were all higher than the nongelatinous region, while the copolymer content was the opposite. Correspondingly, the theory of "premature hydration and crystal nucleation" was proposed to explain the abnormal gelation mechanism of a cementing tail slurry with an insufficient retarder dosage. Furthermore, a novel functionalized copolymer retarder "PAIANS" was synthesized to alleviate the AGP.
Collapse
Affiliation(s)
- Xiujian Xia
- CNPC
Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Hang Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongjin Yu
- CNPC
Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Junxing Li
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yun Cheng
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Pu Xu
- CNPC
Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Miaomiao Hu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Zhejiang
Institute of Tianjin University (Shaoxing), Zhejiang 312300, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jintang Guo
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Zhejiang
Institute of Tianjin University (Shaoxing), Zhejiang 312300, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Sun X, Xie M, Qiu W, Wei C, Chen X, Hu Y. Spectroscopic evidence of S∴N and S∴O hemibonds in heterodimer cations. Phys Chem Chem Phys 2022; 24:19354-19361. [PMID: 35686608 DOI: 10.1039/d2cp00904h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational and condensed phase experimental evidence for the existence of S∴N and S∴O hemibonded structures has been reported previously, but no gas phase experimental evidence has been reported. To experimentally explore the existence of the S∴N and S∴O hemibonds in the gas phase, we recorded the infrared photodissociation action spectra of four cationic clusters: [CH3SH-NH3]+, [CH3SCH3-NH3]+, [CH3SCH3-H2O]+, and [CH3OCH3-H2O]+. Combined with the calculation results, it is found that the S∴N hemibonded structure is competitive with the S⋯HN H-bonded structure, though only the latter structure is actually observed in [CH3SH-NH3]+. The spectral and theoretical results show that hemibonds can form between the second- (oxygen or nitrogen) and the third-period elements (sulfur) in the heterodimer clusters of [CH3SCH3-NH3]+ and [CH3SCH3-H2O]+. However, the S∴N and S∴O hemibonded structures are found competitive with the C⋯HN and CH⋯O H-bonded structures, respectively, and both the structures coexist. On the other hand, the O∴O hemibonded structure is much less stable than other hydrogen bonded (H-bonded) structures in [CH3OCH3-H2O]+, and it shows no clear contribution to the observed spectrum. This study provides direct spectroscopic evidence for the existence of S∴N and S∴O hemibonds in the gas phase and their competition with the H-bonds, which may be also fundamentally important in biological processes.
Collapse
Affiliation(s)
- Xiaonan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Wei Qiu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Chengcheng Wei
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Xujian Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Tachikawa H. Reaction mechanism of an intracluster S N2 reaction induced by electron capture. Phys Chem Chem Phys 2022; 24:3941-3950. [PMID: 35098286 DOI: 10.1039/d1cp04697g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimolecular nucleophilic substitution (SN2) reactions have been widely investigated from both experimental and theoretical points of view because they represent one of the simplest organic reactions. Most studies on SN2 reactions have been focused on bimolecular collision. In contrast, information on intracluster SN2 reactions is limited. In this study, an intracluster SN2 reaction of NF3-CH3Cl triggered by electron attachment was investigated using a direct ab initio molecular dynamics (AIMD) method. In the structure of NF3-CH3Cl, the N-F bond in NF3 is oriented collinearly toward the carbon atom of CH3Cl. After electron capture by NF3-CH3Cl, the F- ion that is generated from the (NF3)- moiety collides with the carbon atom of CH3Cl. The intracluster SN2 reaction occurs as follows: (NF3-CH3Cl)- (electron capture state) → NF2-(F-)-CH3Cl (pre-reaction complex) → transition state (TS) → NF2-CH3F-Cl- (post-reaction complex) → NF2 + CH3F + Cl- (product state). The reaction energy is efficiently transferred to the translational mode of Cl-, and the Cl- ion with a high translational energy is then removed from the system. This energy is significantly larger than that of Cl- formed in the bimolecular SN2 reaction (F- + CH3Cl). The reaction mechanism is discussed based on the theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
5
|
Swaroopa Datta Devulapalli V, McDonnell RP, Ruffley JP, Shukla PB, Luo TY, De Souza ML, Das P, Rosi NL, Karl Johnson J, Borguet E. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. CHEMSUSCHEM 2022; 15:e202102217. [PMID: 34725931 DOI: 10.1002/cssc.202102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with μ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.
Collapse
Affiliation(s)
| | - Ryan P McDonnell
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Present Address: Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jonathan P Ruffley
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mattheus L De Souza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Sun F, Xie M, Zhang Y, Song W, Sun X, Hu Y. Spectroscopic evidence of the C-N covalent bond formed between two interstellar molecules (ISM): acrylonitrile and ammonia. Phys Chem Chem Phys 2021; 23:9672-9678. [PMID: 33616131 DOI: 10.1039/d0cp06274j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acrylonitrile (AN) and ammonia (NH3) are two important nitrogen-containing interstellar molecules in outer space, especially on Titan. Herein, we measured infrared (IR) spectra of neutral and cationic AN-NH3 complexes by VUV single-photon ionization combined with time-of-flight mass spectrometry. On combining IR spectra with the theoretical calculations, we found that the molecules prefer to form a single-ring cyclic H-bonded structure in the neutral AN-NH3 and (AN)2-NH3 clusters. However, after ionization of AN-NH3 and (AN)2-NH3 clusters, a new C-N-covalent bond is confirmed to form directly between AN and NH3, without any energy barrier in the cationic complexes. Moreover, in the ionized (AN)2-NH3 cluster, the covalent C-N bond prefers to form between AN and NH3 rather than the two AN groups. These results provide spectroscopic evidence of AN forming a new molecule with NH3, induced by VUV radiation. The formation of the new C-N bond broadens our knowledge on the evolution of the prebiotic nitrogen-containing molecules in space.
Collapse
Affiliation(s)
- Fufei Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | | | | | | | | | | |
Collapse
|
7
|
Gallardo-Fuentes S, Ormazábal-Toledo R. σ-Holes promote the concertedness in nucleophilic aromatic substitution reactions of nitroarenes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01493d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Concertedness in SNAr may be modulated by the presence of a σ-hole.
Collapse
|
8
|
Chatterjee K, Dopfer O. Switching of binding site from nonpolar to polar ligands toward cationic benzonitrile revealed by infrared spectroscopy. J Chem Phys 2018; 149:174315. [DOI: 10.1063/1.5057430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
9
|
Corinti D, Catone D, Turchini S, Rondino F, Crestoni ME, Fornarini S. Photoionization mass spectrometry of ω-phenylalkylamines: Role of radical cation-π interaction. J Chem Phys 2018; 148:164307. [DOI: 10.1063/1.5027786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma “La Sapienza,” P.le A. Moro 5, I-00185 Roma, Italy
| | - Daniele Catone
- CNR-ISM, Area della Ricerca di Roma Tor Vergata, Via del Fosso del Cavaliere 100, Roma, Italy
| | - Stefano Turchini
- CNR-ISM, Area della Ricerca di Roma Tor Vergata, Via del Fosso del Cavaliere 100, Roma, Italy
| | - Flaminia Rondino
- C. R. ENEA Frascati, FSN-TECFIS, Via E. Fermi 45, 00044 Frascati, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma “La Sapienza,” P.le A. Moro 5, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma “La Sapienza,” P.le A. Moro 5, I-00185 Roma, Italy
| |
Collapse
|
10
|
Mao Y, Ge Q, Horn PR, Head-Gordon M. On the Computational Characterization of Charge-Transfer Effects in Noncovalently Bound Molecular Complexes. J Chem Theory Comput 2018; 14:2401-2417. [PMID: 29614855 DOI: 10.1021/acs.jctc.7b01256] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Charge-transfer (CT) is an important binding force in the formation of intermolecular complexes, and there have been a variety of theoretical models proposed to quantify this effect. These approaches, which typically rely on a definition of a "CT-free" state based on a partition of the system, sometimes yield significantly different results for a given intermolecular complex. Two widely used definitions of the "CT-free" state, the absolutely localized molecular orbitals (ALMO) method (where only on-fragment orbital mixings are permitted) and the constrained density functional theory (CDFT) approach (where fragment electron populations are fixed), are carefully examined in this work. Natural bond orbital (NBO) and the regularized symmetry-adapted perturbation theory (SAPT) are also briefly considered. Results for the ALMO and CDFT definitions of CT are compared on a broad range of model systems, including hydrogen-bonding systems, borane complexes, metal-carbonyl complexes, and complexes formed by water and metal cations. For most of these systems, CDFT yields a much smaller equilibrium CT energy compared to that given by the ALMO-based definition. This is mainly because the CDFT population constraint does not fully inhibit CT, which means that the CDFT "CT-free" state is in fact CT-contaminated. Examples of this contamination include (i) matching forward and backward donation (e.g., formic acid dimer) and (ii) unidirectional CT without changing fragment populations. The magnitude of the latter effect is quantified in systems such as the water dimer by employing a 3-space density constraint in addition to the orbital constraint. Furthermore, by means of the adiabatic EDA, it is shown that several observable effects of CT, such as the "pyramidalization" of the planar BH3 molecule upon the complexation with Lewis bases, already appear on the "CT-free" CDFT surface. These results reveal the essential distinctions between the ALMO and CDFT definitions of CT and suggest that the former is more consistent with accepted understanding of the role of CT in intermolecular binding.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Qinghui Ge
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
11
|
Peverati R, Platt SP, Attah IK, Aziz SG, El-Shall MS, Head-Gordon M. Nucleophilic Aromatic Addition in Ionizing Environments: Observation and Analysis of New C–N Valence Bonds in Complexes between Naphthalene Radical Cation and Pyridine. J Am Chem Soc 2017; 139:11923-11932. [PMID: 28759221 DOI: 10.1021/jacs.7b05756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Peverati
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sean P. Platt
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Isaac K. Attah
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Saaudallah G. Aziz
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M. Samy El-Shall
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Wang D, Fujii A. Spectroscopic observation of two-center three-electron bonded (hemi-bonded) structures of (H 2S) n+ clusters in the gas phase. Chem Sci 2017; 8:2667-2670. [PMID: 28553502 PMCID: PMC5433515 DOI: 10.1039/c6sc05361k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022] Open
Abstract
A two-center three-electron 2c-3e bond (hemi-bond) is a non-classical chemical bond, and its existence has been supposed in radical cation clusters with lone pairs. Though the nature of the hemi-bond and its role in the reactivity of radical cations have attracted great interest, spectroscopic observations of hemi-bonded structures have been very scarce. In the present study, the presence of a stable hemi-bonded core (H2S∴SH2)+ in (H2S) n+ (n = 3-6) in the gas phase is demonstrated by infrared spectroscopy combined with quantum chemical calculations. The spectral features of the free SH stretch of the ion core show that the hemi-bond motif of the ion core is maintained up to the completion of the first H-bonded solvation shell. All of the observed spectra are well reproduced by the minimum energy hemi-bonded isomers, and no sign of the proton-transferred ion core type H3S+-SH, which is estimated to have a much higher energy, is found. Spin density calculations show that the excess charge is almost equally delocalized over the two H2S molecules in the cluster for n = 3 to 6. This also indicates the hemi-bond nature of the (H2S∴SH2)+ ion core and the small impact of the formation of a solvation shell on the ion core.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Chemistry , Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan .
| | - Asuka Fujii
- Department of Chemistry , Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan .
| |
Collapse
|
13
|
Wang D, Fujii A. Structures of protonated hydrogen sulfide clusters, H+(H2S)n, highlighting the nature of sulfur-centered intermolecular interactions. Phys Chem Chem Phys 2017; 19:2036-2043. [DOI: 10.1039/c6cp07342e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Though H2S has the same hydrogen bond coordination property as H2O, intermolecular structures of H+(H2S)n are very different from those of H+(H2O)n, indicating the competition among hydrogen bond and other intermolecular interactions.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
14
|
Lao KU, Herbert JM. Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions. J Chem Theory Comput 2016; 12:2569-82. [PMID: 27049750 DOI: 10.1021/acs.jctc.6b00155] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many schemes for decomposing quantum-chemical calculations of intermolecular interaction energies into physically meaningful components can be found in the literature, but the definition of the charge-transfer (CT) contribution has proven particularly vexing to define in a satisfactory way and typically depends strongly on the choice of basis set. This is problematic, especially in cases of dative bonding and for open-shell complexes involving cation radicals, for which one might expect significant CT. Here, we analyze CT interactions predicted by several popular energy decomposition analyses and ultimately recommend the definition afforded by constrained density functional theory (cDFT), as it is scarcely dependent on basis set and provides results that are in accord with chemical intuition in simple cases, and in quantitative agreement with experimental estimates of the CT energy, where available. For open-shell complexes, the cDFT approach affords CT energies that are in line with trends expected based on ionization potentials and electron affinities whereas some other definitions afford unreasonably large CT energies in large-gap systems, which are sometimes artificially offset by underestimation of van der Waals interactions by density functional theory. Our recommended energy decomposition analysis is a composite approach, in which cDFT is used to define the CT component of the interaction energy and symmetry-adapted perturbation theory (SAPT) defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. SAPT/cDFT provides a stable and physically motivated energy decomposition that, when combined with a new implementation of open-shell SAPT, can be applied to supramolecular complexes involving molecules, ions, and/or radicals.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Paytakov G, Dinadayalane T, Leszczynski J. Toward Selection of Efficient Density Functionals for van der Waals Molecular Complexes: Comparative Study of C–H···π and N–H···π Interactions. J Phys Chem A 2015; 119:1190-200. [DOI: 10.1021/jp511450u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guvanchmyrat Paytakov
- Interdisciplinary Center for
Nanotoxicity, Department of Chemistry
and Biochemistry, Jackson State University, J. R. Lynch Street, Jackson, Mississippi 39217, United States
| | - Tandabany Dinadayalane
- Department
of Chemistry, Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, Georgia 30314, United States
| | - Jerzy Leszczynski
- Interdisciplinary Center for
Nanotoxicity, Department of Chemistry
and Biochemistry, Jackson State University, J. R. Lynch Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
16
|
Horn PR, Sundstrom EJ, Baker TA, Head-Gordon M. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: Theory and applications to intermolecular interactions involving radicals. J Chem Phys 2013; 138:134119. [DOI: 10.1063/1.4798224] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Shishido R, Kuo JL, Fujii A. Structures and dissociation channels of protonated mixed clusters around a small magic number: infrared spectroscopy of ((CH3)3N)n-H(+)-H2O (n = 1-3). J Phys Chem A 2012; 116:6740-9. [PMID: 22630614 DOI: 10.1021/jp3026144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The magic number behavior of ((CH(3))(3)N)(n)-H(+)-H(2)O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1-3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH(3))(3)N molecules. The ion core (protonated site) of the clusters is found to be (CH(3))(3)NH(+) for n = 1-3, but coexistence of an isomer of the H(3)O(+) ion core cannot be ruled out for n = 3. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric studies, is confirmed on the basis of the structure determination by infrared spectroscopy.
Collapse
Affiliation(s)
- Ryunosuke Shishido
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
18
|
Mizuse K, Suzuki Y, Mikami N, Fujii A. Solvation-Induced σ-Complex Structure Formation in the Gas Phase: A Revisit to the Infrared Spectroscopy of [C6H6–(CH3OH)2]+. J Phys Chem A 2011; 115:11156-61. [DOI: 10.1021/jp202680x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kenta Mizuse
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuta Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Naohiko Mikami
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|