1
|
Haugen EA, Hait D, Scutelnic V, Xue T, Head-Gordon M, Leone SR. Ultrafast X-ray Spectroscopy of Intersystem Crossing in Hexafluoroacetylacetone: Chromophore Photophysics and Spectral Changes in the Face of Electron-Withdrawing Groups. J Phys Chem A 2023; 127:634-644. [PMID: 36638240 DOI: 10.1021/acs.jpca.2c06044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intersystem crossings between singlet and triplet states represent a crucial relaxation pathway in photochemical processes. Herein, we probe the intersystem crossing in hexafluoro-acetylacetone with ultrafast X-ray transient absorption spectroscopy at the carbon K-edge. We observe the excited state dynamics following excitation with 266 nm UV light to the 1ππ* (S2) state with element and site-specificity using a broadband soft X-ray pulse produced by high harmonic generation. These results are compared to X-ray spectra computed from orbital optimized density functional theory methods. It is found that the electron-withdrawing fluorine atoms decongest the X-ray absorption spectrum by enhancing separation between features originating from different carbon atoms. This facilitates the elucidation of structural and electronic dynamics at the chromophore. The evolution of the core-to-valence resonances at the carbon K-edge reveals an ultrafast population transfer between the 1nπ* (S1) and 3ππ* (T1) states on a 1.6 ± 0.4 ps time scale, which is similar to the 1.5 ps time scale earlier observed for acetylacetone [ J. Am. Chem. Soc. 2017, 139, 16576-16583, DOI: 10.1021/jacs.7b07532]. It therefore appears that terminal fluorination has little influence on the intersystem crossing rate of the acetylacetone chromophore. In addition, the significant role of hydrogen-bond opened and twisted rotational isomers is elucidated in the excited state dynamics by comparison of the experimental transient X-ray spectra with theory.
Collapse
Affiliation(s)
- Eric A Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Hou S, Wang Y, Zhang Y, Wang W, Zhou X. A reversible turn-on fluorescent probe for quantitative imaging and dynamic monitoring of cellular glutathione. Anal Chim Acta 2022; 1214:339957. [DOI: 10.1016/j.aca.2022.339957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/01/2022]
|
3
|
De Vries B, Muyskens M. Fluorine atom influence on intramolecular hydrogen bonding, isomerization and methyl group rotation in fluorinated acetylacetones. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Jalali E, Nori-Shargh D. Symmetry breaking in the axial symmetrical configurations of enolic propanedial, propanedithial, and propanediselenal: pseudo Jahn–Teller effect versus the resonance-assisted hydrogen bond theory. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the symmetry breaking in the axial symmetrical configurations of enolic propanedial (1), propanedithial (2), and propanediselenal (3) have been investigated by means of time-dependence density functional theory and natural bond orbital interpretations. The results obtained at the quantum chemistry composite (G2MP2, CBS-QB3), ab initio molecular orbital (MP2/6-311++G**), and hybrid density functional theory (B3LYP/6-311++G**) levels of theory showed that the hydrogen-centered synchronous axial symmetrical (C2v) configurations of compounds 1–3 possessing the maximum π-electron delocalization within the M1=C2–C3=C4–M5–H6 keto-enol groups are less stable than their corresponding plane symmetrical (Cs) forms. Importantly, the symmetry breaking in the C2v configurations of the enol forms of compounds 1–3 to their corresponding plane symmetrical Cs configurations is due to the pseudo Jahn–Teller effect (PJTE) by mixing the ground A1 and excited B2 electronic states resulting in a PJT (A1 + B2) ⊗ b2 problem. We may expect that by the decrease of the energy gaps between reference states in the C2v forms that are involved in the PJTE decrease from compound 1 to compound 3, the PJT stabilization energy (PJTSE) may increase but the results obtained showed that the corresponding PJTSEs decrease. This fact can be justified by the increase of the electron delocalizations from the nonbonding orbitals of the C=M moieties to the antibonding orbitals of the H–M bonds, which leads to an increase of the π-electron delocalization within the M1=C2–C3=C4–M5–H6 keto-enol groups. In confrontation between the impacts of the resonance-assisted hydrogen bond and PJTE in the structural and configurational properties of compounds 1–3, PJTE has an overwhelming contribution and causes the symmetry breaking of the C2v configurations to their corresponding Cs forms. The correlations between the structural parameters, synchronicity indices, natural charges, PJTSEs, electron delocalizations, and the hardness of compounds 1–3 have been investigated.
Collapse
Affiliation(s)
- Elahe Jalali
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Davood Nori-Shargh
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
5
|
Rusinska-Roszak D, Sowinski G. Estimation of the intramolecular O-H···O═C hydrogen bond energy via the molecular tailoring approach. Part I: aliphatic structures. J Chem Inf Model 2014; 54:1963-77. [PMID: 24921685 DOI: 10.1021/ci500107w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and universal method for the estimation of the intramolecular hydrogen bond (HB) energy (E(HB)) in hydroxycarbonyl aliphatic compounds is proposed by the application of the molecular tailoring approach (MTA) based on calculations at the second-order Møller-Plesset MP2 level. The calculation of EHB can be realized by the one optimization and three single point calculations of the energy for each compound with carbonyl and hydroxyl groups involved in HB. The intramolecular hydrogen bond energies estimated for 153 structures (of 102 compounds) ranged from 1.4 to 13.7 kcal/mol for systems without resonance-assisted hydrogen bonding (RAHB). To verify the method, we show the correlations of the energy (E(HB)) in six-, seven-, and eight-membered HB rings in the optimized multifunctional molecules with the usual geometry descriptors of hydrogen bonds. Moreover, topological parameters from the atoms in molecules (AIM) theory and the calculated infrared and proton NMR spectra are correlated. The effects of conjugation and π-electron delocalization, bifurcation, and cooperativity are discussed, along with the correlation between the strength and geometrical parameters of H bonding.
Collapse
Affiliation(s)
- Danuta Rusinska-Roszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology , Pl. M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
| | | |
Collapse
|
6
|
Engmann S, Ómarsson B, Lacko M, Stano M, Matejčík Š, Ingólfsson O. Dissociative electron attachment to hexafluoroacetylacetone and its bidentate metal complexes M(hfac)2; M = Cu, Pd. J Chem Phys 2013; 138:234309. [DOI: 10.1063/1.4810877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Maksić ZB, Kovačević B, Vianello R. Advances in Determining the Absolute Proton Affinities of Neutral Organic Molecules in the Gas Phase and Their Interpretation: A Theoretical Account. Chem Rev 2012; 112:5240-70. [DOI: 10.1021/cr100458v] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zvonimir B. Maksić
- Quantum Organic
Chemistry Group, Department of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Borislav Kovačević
- Quantum Organic
Chemistry Group, Department of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Quantum Organic
Chemistry Group, Department of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Zhou X, Jin X, Li D, Wu X. Selective detection of zwitterionic arginine with a new Zn(ii)-terpyridine complex: potential application in protein labeling and determination. Chem Commun (Camb) 2011; 47:3921-3. [DOI: 10.1039/c0cc05771a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|