1
|
Larsen JA, Barclay A, Vettore N, Klausen LK, Mangels LN, Coden A, Schmit JD, Lindorff-Larsen K, Buell AK. The mechanism of amyloid fibril growth from Φ-value analysis. Nat Chem 2025:10.1038/s41557-024-01712-9. [PMID: 39820805 DOI: 10.1038/s41557-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford β analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large 'golf course' region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer-fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.
Collapse
Affiliation(s)
- Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Abigail Barclay
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Louise K Klausen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alberto Coden
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Mohammad-Beigi H, Zanganeh M, Scavenius C, Eskandari H, Farzadfard A, Shojaosadati SA, Enghild JJ, Otzen DE, Buell AK, Sutherland DS. A Protein Corona Modulates Interactions of α-Synuclein with Nanoparticles and Alters the Rates of the Microscopic Steps of Amyloid Formation. ACS NANO 2022; 16:1102-1118. [PMID: 34982538 DOI: 10.1021/acsnano.1c08825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) can modulate protein aggregation and fibril formation in the context of amyloid diseases. Understanding the mechanism of this action remains a critical next step in developing nanomedicines for the treatment or prevention of Parkinson's disease. α-Synuclein (α-Syn) can undergo interactions of different strength with nanoparticles, and these interactions can be prevented by the presence of a protein corona (PC) acquired during the exposure of NPs to serum proteins. Here, we develop a method to attach the PC irreversibly to the NPs, which enables us to study in detail the interaction of α-Syn and polyethylenimine-coated carboxyl-modified polystyrene NPs (PsNPs-PEI) and the role of the dynamics of the interactions. Analysis of the kinetics of fibril formation reveals that the NPs surface promotes the primary nucleation step of amyloid fibril formation without significantly affecting the elongation and fragmentation steps or the final equilibrium. Furthermore, the results show that even though α-Syn can access the surface of NPs that are precoated with a PC, due to the dynamic nature of the PC proteins, the PC nevertheless reduces the acceleratoring effect of the NPs. This effect is likely to be caused by reducing the overall amount of weakly interacting α-Syn molecules on the NP surface and the access of further α-Syn required for fibril elongation. Our experimental approach provides microscopic insight into how serum proteins can modulate the complex interplay between NPs and amyloid proteins.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Masumeh Zanganeh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hoda Eskandari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Azad Farzadfard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
4
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
5
|
Batool N, Yoon S, Imdad S, Kong M, Kim H, Ryu S, Lee JH, Chaurasia AK, Kim KK. An Antibacterial Nanorobotic Approach for the Specific Targeting and Removal of Multiple Drug-Resistant Staphylococcus aureus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100257. [PMID: 33838013 DOI: 10.1002/smll.202100257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes diseases ranging from skin infections to lethal sepsis and has become a serious threat to human health due to multiple-drug resistance (MDR). Therefore, a resistance-free antibacterial therapy is necessary to overcome MDR MRSA infections. In this study, an antibacterial nanorobot (Ab-nanobot) is developed wherein a cell wall-binding domain (CBD)-endolysin, acting as a sensor, is covalently conjugated with an actuator consisting of an iron oxide/silica core-shell. The CBD-endolysin sensor shows an excellent specificity to detect, bind, and accumulate on the S. aureus USA300 cell surface even in a bacterial consortium, and in host cell infections. Ab-nanobot specifically captures and kills MRSA in response to medically approved radiofrequency (RF) electromagnetic stimulation (EMS) signal. When Ab-nanobot receives the RF-EMS signal on the cell surface, actuator induces cell death in MRSA with 99.999% removal within 20 min by cell-wall damage via generation of localized heat and reactive oxygen species. The in vivo efficacy of Ab-nanobot is proven using a mice subcutaneous skin infection model. Collectively, this study offers a nanomedical resistance-free strategy to overcome MDR MRSA infections by providing a highly specific nanorobot for S. aureus.
Collapse
Affiliation(s)
- Nayab Batool
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Seokyoung Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Saba Imdad
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Hun Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| |
Collapse
|
6
|
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation. Biophys Chem 2021; 271:106549. [PMID: 33578107 DOI: 10.1016/j.bpc.2021.106549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils are ordered, non-covalent polymers of proteins that are linked to a range of diseases, as well as biological functions. Amyloid fibrils are often considered thermodynamically so stable that they appear to be irreversible, explaining why very few quantitative thermodynamic studies have been performed on amyloid fibrils, compared to the very large body of kinetic studies. Here we explore the thermodynamics of amyloid fibril formation by the protein PI3K-SH3, which forms amyloid fibrils under acidic conditions. We use quartz crystal microbalance (QCM) and develop novel temperature perturbation experiments based on differential scanning fluorimetry (DSF) to measure the temperature dependence of the fibril growth and dissociation rates, allowing us to quantitatively describe the thermodynamic stability of PI3K-SH3 amyloid fibrils between 10 and 75°C.
Collapse
|
7
|
The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. PLoS Comput Biol 2020; 16:e1007767. [PMID: 32365068 PMCID: PMC7282669 DOI: 10.1371/journal.pcbi.1007767] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Many proteins have the potential to aggregate into amyloid fibrils, protein polymers associated with a wide range of human disorders such as Alzheimer’s and Parkinson’s disease. The thermodynamic stability of amyloid fibrils, in contrast to that of folded proteins, is not well understood: the balance between entropic and enthalpic terms, including the chain entropy and the hydrophobic effect, are poorly characterised. Using a combination of theory, in vitro experiments, simulations of a coarse-grained protein model and meta-data analysis, we delineate the enthalpic and entropic contributions that dominate amyloid fibril elongation. Our prediction of a characteristic temperature-dependent enthalpic signature is confirmed by the performed calorimetric experiments and a meta-analysis over published data. From these results we are able to define the necessary conditions to observe cold denaturation of amyloid fibrils. Overall, we show that amyloid fibril elongation is associated with a negative heat capacity, the magnitude of which correlates closely with the hydrophobic surface area that is buried upon fibril formation, highlighting the importance of hydrophobicity for fibril stability. Most proteins fold in the cell into stable, compact structures. Nevertheless, many proteins also have the ability to stick together, forming long fibrillar structures that are associated with a wide range of human disorders including Alzheimer’s and Parkinson’s disease. The exact nature of the amyloid-causing stickiness is not well understood, nevertheless amyloid fibrils show some very specific thermodynamic characteristics. Some fibrils even destabilise at low temperatures. In this work we translate hydrophobic theory previously used to model protein folding to fibril formation. We combine this theory with experimental measurements, simulations and meta-data analysis of different types of fibrils. This allowed us to unravel the nature of the stickiness in amyloid fibrils by observing the effect of temperature changes, specifically at low temperatures, on hydrophobicity.
Collapse
|
8
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
The growth of amyloid fibrils: rates and mechanisms. Biochem J 2019; 476:2677-2703. [DOI: 10.1042/bcj20160868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
AbstractAmyloid fibrils are β-sheet-rich linear protein polymers that can be formed by a large variety of different proteins. These assemblies have received much interest in recent decades, due to their role in a range of human disorders. However, amyloid fibrils are also found in a functional context, whereby their structural, mechanical and thermodynamic properties are exploited by biological systems. Amyloid fibrils form through a nucleated polymerisation mechanism with secondary processes acting in many cases to amplify the number of fibrils. The filamentous nature of amyloid fibrils implies that the fibril growth rate is, by several orders of magnitude, the fastest step of the overall aggregation reaction. This article focusses specifically on in vitro experimental studies of the process of amyloid fibril growth, or elongation, and summarises the state of knowledge of its kinetics and mechanisms. This work attempts to provide the most comprehensive summary, to date, of the available experimental data on amyloid fibril elongation rate constants and the temperature and concentration dependence of amyloid fibril elongation rates. These data are compared with those from other types of protein polymers. This comparison with data from other polymerising proteins is interesting and relevant because many of the basic ideas and concepts discussed here were first introduced for non-amyloid protein polymers, most notably by the Japanese school of Oosawa and co-workers for cytoskeletal filaments.
Collapse
|
10
|
Molina A, Scheibel T, Humenik M. Nanoscale Patterning of Surfaces via DNA Directed Spider Silk Assembly. Biomacromolecules 2018; 20:347-352. [DOI: 10.1021/acs.biomac.8b01333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Marcuello C, Foulon L, Chabbert B, Molinari M, Aguié-Béghin V. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9376-9386. [PMID: 30037232 DOI: 10.1021/acs.langmuir.8b01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) experiments with functionalized tips are currently one of the most powerful tools to locally measure adhesion forces via single-molecule force spectroscopy (SMFS) measurements. The main difficulty is to precisely control the attachment of biomolecules to the cantilever. Different chemistry procedures have been developed including the use of spacer molecules. Even if a process works well for small biomolecules such as antibodies, issues remain regarding nanoparticles or larger objects such as cellulose nanocrystals because it is difficult to precisely control their coverage and homogeneity. In this work, an original procedure based on the Langmuir-Blodgett (LB) technique was implemented for lever functionalization with cellulose nanocrystals and compared with classical chemical strategies. LB shows to be almost 6.0-fold more efficient than chemical procedure in terms of cellulose nanocrystals coverage attachment. Moreover, the LB technology provides advantage of not requiring linker molecules, which could have detrimental effects such as overestimation of the interaction force. The structural characterization and SMFS measurements of lignocellulosic polymers show that this strategy enables the precise control of the lever coverage, which improves the accuracy of the adhesion measurements. Such methodology is expected to strongly impact the AFM tip/tipless functionalization and SMFS measurements in different fields.
Collapse
Affiliation(s)
- Carlos Marcuello
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Laurence Foulon
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Brigitte Chabbert
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, 33607 , Pessac , France
| | | |
Collapse
|
12
|
Carbone ME, Ciriello R, Moscarelli P, Boraldi F, Bianco G, Guerrieri A, Bochicchio B, Pepe A, Quaglino D, Salvi AM. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Anal Bioanal Chem 2018; 410:4925-4941. [DOI: 10.1007/s00216-018-1142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/04/2023]
|
13
|
Young LJ, Kaminski Schierle GS, Kaminski CF. Imaging Aβ(1-42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys 2017; 19:27987-27996. [PMID: 29026905 PMCID: PMC7612976 DOI: 10.1039/c7cp03412a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The major hallmark of Alzheimer's disease is the deposition of plaques of amyloid fibrils formed from amyloid-β (Aβ) peptides. Kinetic studies have contributed significantly towards a mechanistic understanding of amyloid fibril self-assembly, however dynamic features of the aggregation process cannot be captured using ensemble methods. Here we present an assay for imaging Aβ42 aggregation dynamics at the single fibril level, allowing for the quantitative extraction of concentration and temperature dependent kinetic parameters. From direct observation of elongation using TIRF and super-resolution optical microscopy, we find that Aβ42 fibril growth is strongly polarized, with fast and slow growing ends arising from different elongation rates, but also from a growth incompetent state, which dominates the process at the slow growing end. Our findings reveal the surprising complexity of the Aβ42 fibril elongation reaction at the microscopic level.
Collapse
Affiliation(s)
- Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, UK.
| | | | | |
Collapse
|
14
|
Secondary nucleation of monomers on fibril surface dominatesα-synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys 2017; 50:e6. [DOI: 10.1017/s0033583516000172] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractParkinson's disease (PD) is characterized by proteinaceous aggregates named Lewy Bodies and Lewy Neurites containingα-synuclein fibrils. The underlying aggregation mechanism of this protein is dominated by a secondary process at mildly acidic pH, as in endosomes and other organelles. This effect manifests as a strong acceleration of the aggregation in the presence of seeds and a weak dependence of the aggregation rate on monomer concentration. The molecular mechanism underlying this process could be nucleation of monomers on fibril surfaces or fibril fragmentation. Here, we aim to distinguish between these mechanisms. The nature of the secondary processes was investigated using differential sedimentation analysis, trap and seed experiments, quartz crystal microbalance experiments and super-resolution microscopy. The results identify secondary nucleation of monomers on the fibril surface as the dominant secondary process leading to rapid generation of new aggregates, while no significant contribution from fragmentation was found. The newly generated oligomeric species quickly elongate to further serve as templates for secondary nucleation and this may have important implications in the spreading of PD.
Collapse
|
15
|
β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces. Sci Rep 2016; 6:36010. [PMID: 27808107 PMCID: PMC5093550 DOI: 10.1038/srep36010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 11/08/2022] Open
Abstract
α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson's disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.
Collapse
|
16
|
Leung WH, So PK, Wong WT, Lo WH, Chan PH. Ethylenediamine-modified amyloid fibrils of hen lysozyme with stronger adsorption capacity as rapid nano-biosorbents for removal of chromium(vi) ions. RSC Adv 2016. [DOI: 10.1039/c6ra15238d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of amine-fortified amyloid fibrils of hen lysozyme as biosorbents for Cr(vi) removal is reported. Through –COO−/ethylenediamine conjugation, the nanofibers have higher net positive charge, offering rapid and stronger charge-based absorption of Cr(vi).
Collapse
Affiliation(s)
- Wai-Hong Leung
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Pui-Kin So
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Wai-Ting Wong
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Wai-Hung Lo
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Pak-Ho Chan
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
17
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Wang C, Xu L, Cheng F, Wang H, Jia L. Curcumin induces structural change and reduces the growth of amyloid-β fibrils: a QCM-D study. RSC Adv 2015. [DOI: 10.1039/c5ra02314a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin inhibited Aβ fibril growth through leading to the structural conversion of the growing fibril to a more loosely constructed aggregate.
Collapse
Affiliation(s)
- Conggang Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Li Xu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Fang Cheng
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Hanqi Wang
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
19
|
Huynen C, Willet N, Buell AK, Duwez AS, Jerôme C, Dumoulin M. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:239-48. [PMID: 25489872 DOI: 10.1016/j.bbapap.2014.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Polyglutamine (polyQ) diseases, including Huntington's disease, are neurodegenerative disorders associated with the abnormal expansion of a polyQ tract within nine proteins. The polyQ expansion is thought to be a major determinant in the development of neurotoxicity, triggering protein aggregation into amyloid fibrils, although non-polyQ regions play a modulating role. In this work, we investigate the relative importance of the polyQ length, its location within a host protein, and the conformational state of the latter in the amyloid fibril elongation. Model polyQ proteins made of the β-lactamase BlaP containing up to 79Q inserted at two different positions, and quartz crystal microbalance and atomic force microscopy were used for this purpose. We demonstrate that, independently of the polyQ tract location and the conformational state of the host protein, the relative elongation rate of fibrils increases linearly with the polyQ length. The slope of the linear fit is similar for both sets of chimeras (i.e., the elongation rate increases by ~1.9% for each additional glutamine), and is also similar to that previously observed for polyQ peptides. The elongation rate is, however, strongly influenced by the location of the polyQ tract within BlaP and the conformational state of BlaP. Moreover, comparison of our results with those previously reported for aggregation in solution indicates that these two parameters also modulate the ability of BlaP-polyQ chimeras to form the aggregation nucleus. Altogether our results suggest that non-polyQ regions are valuable targets in order to interfere with the process of amyloid fibril formation associated with polyQ diseases.
Collapse
Affiliation(s)
- Céline Huynen
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, University of Liege, Liege, Belgium
| | - Nicolas Willet
- Nanochemistry and Molecular Systems, Department of Chemistry, University of Liege, Liege, Belgium
| | - Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anne-Sophie Duwez
- Nanochemistry and Molecular Systems, Department of Chemistry, University of Liege, Liege, Belgium
| | - Christine Jerôme
- Center for Education and Research on Macromolecules (CERM), Department of Chemistry, University of Liege, Liege, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, University of Liege, Liege, Belgium.
| |
Collapse
|
20
|
The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays Biochem 2014; 56:11-39. [DOI: 10.1042/bse0560011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we present an overview of the kinetics and thermodynamics of protein aggregation into amyloid fibrils. The perspective we adopt is largely experimental, but we also discuss recent developments in data analysis and we show that only a combination of well-designed experiments with appropriate theoretical modelling is able to provide detailed mechanistic insight into the complex pathways of amyloid formation. In the first part of the chapter, we describe measurements of the thermodynamic stability of the amyloid state with respect to the soluble state of proteins, as well as the magnitude and origin of this stability. In the second part, we discuss in detail the kinetics of the individual molecular steps in the overall mechanism of the conversion of soluble protein into amyloid fibrils. Finally, we highlight the effects of external factors, such as salt type and concentration, chemical denaturants and molecular chaperones on the kinetics of aggregation.
Collapse
|
21
|
Lorenzen N, Nielsen SB, Buell AK, Kaspersen JD, Arosio P, Vad BS, Paslawski W, Christiansen G, Valnickova-Hansen Z, Andreasen M, Enghild JJ, Pedersen JS, Dobson CM, Knowles TPJ, Otzen DE. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc 2014; 136:3859-68. [PMID: 24527756 DOI: 10.1021/ja411577t] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of proteins' formation of amyloid fibrils have revealed that potentially cytotoxic oligomers frequently accumulate during fibril formation. An important question in the context of mechanistic studies of this process is whether or not oligomers are intermediates in the process of amyloid fibril formation, either as precursors of fibrils or as species involved in the fibril elongation process or instead if they are associated with an aggregation process that is distinct from that generating mature fibrils. Here we describe and characterize in detail two well-defined oligomeric species formed by the protein α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson's disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both possess a degree of β-sheet structure that is intermediate between that of the disordered monomer and the fully structured amyloid fibrils, and both have the capacity to permeabilize vesicles in vitro. The smaller oligomers, estimated to contain ∼30 monomers, are more numerous under the conditions used here than the larger ones, and small-angle X-ray scattering data suggest that they are ellipsoidal with a high degree of flexibility at the interface with solvent. This oligomer population is unable to elongate fibrils and indeed results in an inhibition of the kinetics of amyloid formation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Nikolai Lorenzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN) and §Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Michaels TCT, Buell AK, Terentjev EM, Knowles TPJ. Quantitative Analysis of Diffusive Reactions at the Solid-Liquid Interface in Finite Systems. J Phys Chem Lett 2014; 5:695-699. [PMID: 26270839 DOI: 10.1021/jz4024833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A central element in many processes in physics, chemistry and biology is a reaction between a species immobilized on a surface and a partner that is able to diffuse in solution. However, integrated rate laws for this class of chemical processes have so far only been found in certain special cases. Here, we present a model for the time dependence of an irreversible reaction between particles in a solution of finite volume and a surface. The resulting analytical expression allows quantitative analysis of the transient kinetics of the reaction between soluble particles and a surface. We apply this approach to the analysis of quartz crystal microbalance experiments of protein aggregation under conditions where both reaction and diffusion define the overall kinetics. Furthermore, we use the model to determine absolute mass sensitivity coefficients for soft and rough surfaces, a situation where conventional approaches to determine the mass sensitivity a priori fail.
Collapse
Affiliation(s)
- Thomas C T Michaels
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander K Buell
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Eugene M Terentjev
- ‡Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tuomas P J Knowles
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Volpatti LR, Knowles TPJ. Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa R. Volpatti
- Department of Chemistry; University of Cambridge; Lensfield Road, CB2 1EW United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry; University of Cambridge; Lensfield Road, CB2 1EW United Kingdom
| |
Collapse
|
24
|
Kurzątkowska K, Ostatná V, Hamley IW, Doneux T, Paleček E. Electrochemical sensing of 2D condensation in amyloid peptides. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Electrostatic effects in filamentous protein aggregation. Biophys J 2013; 104:1116-26. [PMID: 23473495 DOI: 10.1016/j.bpj.2013.01.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/06/2013] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules.
Collapse
|
26
|
Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. J Mol Biol 2013; 425:2397-411. [DOI: 10.1016/j.jmb.2013.01.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
|
27
|
Xu LQ, Wu S, Buell AK, Cohen SIA, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TPJ, Dobson CM, Welland ME, Jones GW, Perrett S. Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110410. [PMID: 23530260 PMCID: PMC3638396 DOI: 10.1098/rstb.2011.0410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Collapse
Affiliation(s)
- Li-Qiong Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, , 15 Datun Road, Chaoyang, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
29
|
Tian K, Peng M, Ren X, Liao C, Fei W. Regeneration of tooth-like hydroxyapatite depended on amelogenin functional section monolayer: A new approach for tooth repair. Med Hypotheses 2012; 79:143-6. [DOI: 10.1016/j.mehy.2012.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 04/01/2012] [Indexed: 11/29/2022]
|
30
|
Koo J, Czeslik C. Probing aggregation and fibril formation of insulin in polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2012; 94:80-8. [PMID: 22369752 DOI: 10.1016/j.colsurfb.2012.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 11/29/2022]
Abstract
Ultrathin films are useful for coating materials and controlling drug delivery processes. Here, we explore the use of polyelectrolyte multilayers as templates for the formation of two-dimensional protein networks, which represent biocompatible and biodegradable ultrathin films. In a first step, we have studied the lateral aggregation and amyloid fibril formation of bovine insulin that is adsorbed at and confined within planar polyelectrolyte multilayers, assembled with poly(diallyldimethylammonium chloride) (PDDA), poly(styrenesulfonic acid) (PSS), and hyaluronic acid (HA). Si-PDDA-PSS-(insulin-PSS)(x) and Si-PDDA-PSS-(insulin-HA)(x) multilayers (x=1-4) have been prepared and characterized in the fully hydrated state by using X-ray reflectometry, attenuated total reflection-Fourier transform infrared spectroscopy and confocal fluorescence microscopy. The obtained data demonstrate a successful build-up of the insulin-polyelectrolyte multilayers on silicon wafers that grow strongly in thickness upon insulin adsorption on PSS and HA layers. The secondary structure analysis of insulin, based on the vibrational amide I'-band, indicates an enhanced intermolecular β-sheet formation within the multilayers at 70°C and pD=2, i.e. at conditions that promote insulin amyloid fibrils rich in β-sheet contents. However, insulin that is confined between two polyelectrolyte layers rather forms amorphous aggregates as can be inferred from confocal fluorescence images. Remarkably, when insulin is deposited as the top-layer, a partial conversion into a two-dimensional fibrillar network can be induced by adding amyloid seeds to the solution. Thus, the results of this study illustrate the capability of polyelectrolyte multilayers as templates for the growth of protein networks.
Collapse
Affiliation(s)
- Juny Koo
- Technische Universität Dortmund, Fakultät Chemie, D-44221 Dortmund, Germany
| | | |
Collapse
|
31
|
Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Detailed Analysis of the Energy Barriers for Amyloid Fibril Growth. Angew Chem Int Ed Engl 2012; 51:5247-51. [DOI: 10.1002/anie.201108040] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/13/2012] [Indexed: 12/24/2022]
|
32
|
Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Analyse der Energiebarrieren für das Wachstum von Amyloidfibrillen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Roehling JD, Arslan I, Moulé AJ. Controlling microstructure in poly(3-hexylthiophene) nanofibers. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm13633c] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Buell AK, Dobson CM, Welland ME. Measuring the kinetics of amyloid fibril elongation using quartz crystal microbalances. Methods Mol Biol 2012; 849:101-119. [PMID: 22528086 DOI: 10.1007/978-1-61779-551-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Kinetic measurements of amyloid growth provide insight into the free energy landscape of this supramolecular process and are crucial in the search for potent inhibitors of the main disorders with which it is associated, including Alzheimer's and Parkinson's diseases and Type II diabetes. In recent years, a new class of surface-bound biosensor assays, e.g., those based on surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM) have been established as extremely valuable tools for kinetic measurements of amyloid formation. Here we describe detailed protocols of how QCM techniques can be used to monitor the elongation of amyloid fibrils in real time and to study the influence of external factors on the kinetics of amyloid growth with unprecedented accuracy.
Collapse
|
35
|
Buell AK, Esbjörner EK, Riss PJ, White DA, Aigbirhio FI, Toth G, Welland ME, Dobson CM, Knowles TPJ. Probing small molecule binding to amyloid fibrils. Phys Chem Chem Phys 2011; 13:20044-52. [PMID: 22006124 DOI: 10.1039/c1cp22283j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions. We discuss in detail two recently developed techniques within this framework: linear dichroism, a promising extension of the more traditional spectroscopic techniques, and biosensing methods, where surface-bound amyloid fibrils are exposed to solutions of small molecules. Both techniques rely on the measurement of physical properties that are very directly linked to the binding of small molecules to amyloid aggregates and therefore provide an attractive route to probe these important interactions.
Collapse
Affiliation(s)
- Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Anik Ü, Cevik S, Timur S. Bismuth Film Electrode as Sensing Platform for IgE-anti-IgE Interactions. ELECTROANAL 2011. [DOI: 10.1002/elan.201100047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Buell AK, Dhulesia A, Mossuto MF, Cremades N, Kumita JR, Dumoulin M, Welland ME, Knowles TP, Salvatella X, Dobson CM. Population of nonnative states of lysozyme variants drives amyloid fibril formation. J Am Chem Soc 2011; 133:7737-7743. [PMID: 21528861 PMCID: PMC4982536 DOI: 10.1021/ja109620d] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.
Collapse
Affiliation(s)
- Alexander K. Buell
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, UK
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Maria F. Mossuto
- Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Mireille Dumoulin
- Centre for Protein Engineering, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Mark E. Welland
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, UK
| | - Tuomas P.J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
38
|
Abstract
Peptides and proteins are the most diverse building blocks in biomolecular self-assembly in terms of chemistry, nanostructure formation and functionality. Self-assembly is an intrinsic property of peptides. In this chapter, we attempt to address the following issues: How can we synthesize a self-assembling peptide? What are the fundamental physical and chemical principles that underpin peptide self-assembly? How can we learn to finely control peptide self-assembly? The merits of answering these questions are inspiring both for biology and medicine in terms of new opportunities for understanding, preventing and curing of diseases, and for nanotechnology in terms of new prescribed routes to achieving peptide-based nanostructures with a range of properties appropriate for specific applications.
Collapse
|
39
|
Zhang H, Xu LQ, Perrett S. Studying the effects of chaperones on amyloid fibril formation. Methods 2010; 53:285-94. [PMID: 21144901 DOI: 10.1016/j.ymeth.2010.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/02/2023] Open
Abstract
The results of cell and animal model studies demonstrate that molecular chaperones play an important role in controlling the processes of protein misfolding and amyloid formation in vivo. In addition, chaperones are involved in the appearance, propagation and clearance of prion phenotypes in yeast. The effect of chaperones on amyloid formation has been studied in great detail in recent years in order to elucidate the underlying mechanisms. An important approach is the direct study of effects of chaperones on amyloid fibril formation in vitro. This review introduces the methods and techniques that are commonly used to control and monitor the time course of fibril formation, and to detect interactions between chaperones and fibril-forming proteins. The techniques we address include thioflavin T binding fluorescence and filter retardation assays, size-exclusion chromatography, dynamic light scattering, and biosensor assays. Our aim in this review is to provide guidance on how to embark on study of the effect of chaperones on amyloid fibril formation, and how to avoid common problems that may be encountered, using examples and experience from the authors' lab and from the wider literature.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | |
Collapse
|