1
|
Singh RK, Mukherjee A. Molecular Mechanism of Dual Intercalation in Sac7d–DNA Complexation. J Phys Chem B 2022; 126:1682-1690. [DOI: 10.1021/acs.jpcb.1c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reman Kumar Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Chemistry, Indian Institute of Technology, Bombay 400076, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Zhang X, Zheng Q. How DNA affects the hyperthermophilic protein Ape10b2 for oligomerization: an investigation using multiple short molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:25841-25849. [PMID: 34763347 DOI: 10.1039/d1cp04341b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alba2 is a hyperthermophilic DNA-binding protein, and DNA plays a crucial role in the Alba2 oligomerization process. It is a pity that there is limited research in terms of how DNA affects the conformational change of Alba2 in oligomerization. Herein, we complement the crystal structure of the Ape10b2 (belongs to Alba2)-dsDNA complex (PDB ID: 3U6Y) and employ multiple short molecular dynamics (MSMD) simulations to illuminate the influence of DNA on Ape10b2 at four temperatures (300, 343, 363, and 373 K). Our results indicate that DNA could cause the conformational changes of two important regions (loop1 and loop5), which may be beneficial for protein oligomerization. The results of hydrogen bond analysis show that the increasing number of hydrogen bonds between two monomers of Ape10b2 may also be a favorable factor for oligomerization. In addition, Ape10b2 can stabilize DNA by electrostatic interactions with an increase in temperature, and five residues (Arg40, Arg42, Asn43, Asn45, and Arg46) play a stabilizing role during protein binding to DNA. Our findings could help in understanding the favorable factors leading to protein oligomerization, which contributes to enzyme engineering research from an industrial perspective.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, People's Republic of China
| |
Collapse
|
3
|
Sandmann A, Sticht H. Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One 2018; 13:e0192605. [PMID: 29432448 PMCID: PMC5809078 DOI: 10.1371/journal.pone.0192605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.
Collapse
Affiliation(s)
- Achim Sandmann
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
4
|
Zhang X, Zheng QC. Exploring the influence of hyperthermophilic protein Ssh10b on the stability and conformation of RNA by molecular dynamics simulation. Biopolymers 2017; 109. [DOI: 10.1002/bip.23068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/27/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Xue Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University; Changchun 130023 People's Republic of China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University; Changchun 130023 People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education; Jilin University; Changchun 130023 People's Republic of China
| |
Collapse
|
5
|
BIKKINA SWETHA, BHATI AGASTYAP, PADHI SILADITYA, PRIYAKUMAR UDEVA. Temperature Dependence of the Stability of Ion Pair Interactions, and its Implications on the Thermostability of Proteins from Thermophiles. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1231-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
SURESH GORLE, PRIYAKUMAR UDEVA. Atomistic details of the molecular recognition of DNA-RNA hybrid duplex by ribonuclease H enzyme. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0942-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Mukherjee S, Kundu S, Bhattacharyya D. Temperature effect on poly(dA).poly(dT): molecular dynamics simulation studies of polymeric and oligomeric constructs. J Comput Aided Mol Des 2014; 28:735-49. [PMID: 24865848 DOI: 10.1007/s10822-014-9755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/19/2014] [Indexed: 01/27/2023]
Abstract
Understanding unwinding and melting of double helical DNA is very important to characterize role of DNA in replication, transcription, translation etc. Sequence dependent melting thermodynamics is used extensively for detecting promoter regions but melting studies are generally done for short oligonucleotides. This study reports several molecular dynamics (MD) simulations of homopolymeric poly(dA).poly(dT) as regular oligonucleotide fragments as well as its corresponding polymeric constructs with water and charge-neutralizing counterions at different temperatures ranging from 300 to 400 K. We have eliminated the end-effect or terminal peeling propensity by employing MD simulation of DNA oligonucleotides in such a manner that gives rise to properties of polymeric DNA of infinite length. The dynamic properties such as basepairing and stacking geometry, groove width, backbone conformational parameters, bending, distribution of counter ions and number of hydrogen bonds of oligomeric and polymeric constructs of poly(dA).poly(dT) have been analyzed. The oligomer shows terminal fraying or peeling effect at temperatures above 340 K. The polymer shows partial melting at elevated temperatures although complete denaturations of basepairs do not take place. The analysis of cross strand hydrogen bonds shows that the number of N-H···O hydrogen bonds increases with increase in temperature while C-H···O hydrogen bond frequencies decrease with temperature. Restructuring of counterions in the minor groove with temperature appear as initiation of melting in duplex structures.
Collapse
Affiliation(s)
- Sanchita Mukherjee
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | | | | |
Collapse
|
8
|
Suresh G, Priyakumar UD. DNA–RNA hybrid duplexes with decreasing pyrimidine content in the DNA strand provide structural snapshots for the A- to B-form conformational transition of nucleic acids. Phys Chem Chem Phys 2014; 16:18148-55. [DOI: 10.1039/c4cp02478h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gradual increase in the deoxypyrimidine content in DNA–RNA hybrids leads to B- to A-form nucleic acid transition. Possible factors that govern nuclease activity on hybrid duplexes are presented.
Collapse
Affiliation(s)
- Gorle Suresh
- Centre for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology
- Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology
- Hyderabad 500 032, India
| |
Collapse
|
9
|
Chu WT, Zheng QC. Conformational changes of enzymes and DNA in molecular dynamics: influenced by pH, temperature, and ligand. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:179-217. [PMID: 23954102 DOI: 10.1016/b978-0-12-411636-8.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein conformation, which has been a research hotspot for human diseases, is an important factor of protein properties. Recently, a series of approaches have been utilized to investigate the conformational changes under different conditions. Some of them have gained promising achievements, but it is still deficient in the detail researches at the atomic level. In this chapter, a series of computational examples of protein conformational changes under different pH environment, temperature, and ligand binding are described. We further show some useful methods, such as constant pH molecular dynamics simulations, molecular docking, and molecular mechanics Poisson-Boltzmann surface area/generalized Born surface area calculations. In comparison with the experimental results, the methods mentioned above are reasonable to detect and predict the interaction between residue and residue, residue and DNA, and residue and ligand. Additionally, some crucial interactions that cause protein conformational changes are discovered and discussed in this chapter. In summary, our work can give penetrating information to understand the pH-, temperature-, and ligand-induced conformational change mechanisms.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, PR China
| | | |
Collapse
|
10
|
Spiriti J, van der Vaart A. DNA Binding and Bending by Sac7d is Stepwise. Chembiochem 2013; 14:1434-7. [DOI: 10.1002/cbic.201300264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Indexed: 11/10/2022]
|
11
|
Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, White MF, Schiessel H, van Noort J, Dame RT. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res 2012; 41:196-205. [PMID: 23155062 PMCID: PMC3592393 DOI: 10.1093/nar/gks1053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein–DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Physics of Life Processes, Leiden Institute of Physics and Cell Observatory, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen L, Zhang JL, Yu LY, Zheng QC, Chu WT, Xue Q, Zhang HX, Sun CC. Influence of hyperthermophilic protein Cren7 on the stability and conformation of DNA: insights from molecular dynamics simulation and free energy analysis. J Phys Chem B 2012; 116:12415-25. [PMID: 23013198 DOI: 10.1021/jp305860h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cren7, a novel chromatin protein highly conserved among crenarchaea, plays an important role in genome packaging and gene regulation. However, the detail dynamical structural characteristic of the Cren7-DNA complex and the detail study of the DNA in the complex have not been done. Focused on two specific Cren7-DNA complexes (PDB codes 3LWH and 3LWI ), we applied molecular dynamics (MD) simulations at four different temperatures (300, 350, 400, and 450 K) and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation at 300 and 350 K to examine the role of Cren7 protein in enhancing the stability of DNA duplexes via protein-DNA interactions, and to study the structural transition in DNA. The simulation results indicate that Cren7 stabilizes DNA duplex in a certain temperature range in the binary complex compared with the unbound DNA molecules. At the same time, DNA molecules were found to undergo B-like to A-like form transitions with increased temperature. The results of statistical analyses of the H-bond and hydrophobic contacts show that some residues have significant influence on the structure of DNA molecules. Our work can give important information to understand the interactions of proteins with nucleic acids and other ligands.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen L, Zheng QC, Yu LY, Chu WT, Zhang JL, Xue Q, Zhang HX, Sun CC. Insights into the thermal stabilization and conformational transitions of DNA by hyperthermophile protein Sso7d: molecular dynamics simulations and MM-PBSA analysis. J Biomol Struct Dyn 2012; 30:716-27. [PMID: 22731116 DOI: 10.1080/07391102.2012.689702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the assembly of DNA-protein complex, the DNA kinking plays an important role in nucleoprotein structures and gene regulation. Molecular dynamics (MD) simulations were performed on specific protein-DNA complexes in this study to investigate the stability and structural transitions of DNA depending on temperature. Furthermore, we introduced the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) approach to analyze the interactions between DNA and protein in hyperthermophile. Focused on two specific Sso7d-DNA complexes (PDB codes: 1BNZ and 1BF4), we performed MD simulations at four temperatures (300, 360, 420, and 480 K) and MM-PBSA at 300 and 360 K to illustrate detailed information on the changes of DNA. Our results show that Sso7d stabilizes DNA duplex over a certain temperature range and DNA molecules undergo B-like to A-like form transitions in the binary complex with the temperature increasing, which are consistent with the experimental data. Our work will contribute to a better understanding of protein-DNA interaction.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|