Chen Y, Xu Y, Perry K, Sokolov AP, More K, Pang Y. Achieving Diameter-Selective Separation of Single-Walled Carbon Nanotubes by Using Polymer Conformation-Confined Helical Cavity.
ACS Macro Lett 2012;
1:701-705. [PMID:
35607091 DOI:
10.1021/mz3001308]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A water-soluble poly[(m-phenylenevinylene)-alt-(p-phenylenevinylene)] (PmPV) 2 has been synthesized, which exhibits an unsymmetrical substitution pattern on the para-phenylene unit. With one substituent being hydrophilic while the other being hydrophobic, the polymer chain has a higher tendency to fold in aqueous solution, thereby promoting helical conformation. The polymer is found to selectively disperse the single-walled nanotubes (SWNTs) of small diameters (d = 0.75-0.84 nm), in sharp contrast to PmPV 1 with a symmetrical substitution pattern. The intriguing diameter-based selectivity is believed to be associated with the confined helical conformation, which provides a suitable cavity to host the SWNT of proper sizes. The study thus provides a useful demonstration that the polymer conformation can have a profound impact on the SWNT sorting.
Collapse