1
|
Kakinoki K, Kurasawa R, Maki Y, Dobashi T, Yamamoto T. Gelation and Orientation Dynamics Induced by Contact of Protein Solution with Transglutaminase Solution. Gels 2023; 9:478. [PMID: 37367148 DOI: 10.3390/gels9060478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Gel growth induced by contact of polymer solutions with crosslinker solutions yields an emerging class of anisotropic materials with many potential applications. Here, we report the case of a study on the dynamics in forming anisotropic gels using this approach with an enzyme as a trigger of gelation and gelatin as the polymer. Unlike the previously studied cases of gelation, the isotropic gelation was followed by gel polymer orientation after a lag time. The isotropic gelation dynamics did not depend on concentrations of the polymer turning into gel and of the enzyme inducing gelation, whereas, for the anisotropic gelation, the square of the gel thickness was a linear function of the elapsed time, and the slope increased with polymer concentration. The gelation dynamics of the present system was explained by a combination of diffusion-limited gelation followed by free-energy-limited orientation of polymer molecules.
Collapse
Affiliation(s)
- Kasumi Kakinoki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Ryuta Kurasawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yasuyuki Maki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiaki Dobashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Takao Yamamoto
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
2
|
Yamamoto T. Relationship between Rate-Limiting Process and Scaling Law in Gel Growth Induced by Liquid-Liquid Contact. Gels 2023; 9:gels9050359. [PMID: 37232951 DOI: 10.3390/gels9050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Gelation through the liquid-liquid contact between a polymer solution and a gelator solution has been attempted with various combinations of gelator and polymer solutions. In many combinations, the gel growth dynamics is expressed as X∼t, where X is the gel thickness and t is the elapsed time, and the scaling law holds for the relationship between X and t. In the blood plasma gelation, however, the crossover of the growth behavior from X∼t in the early stage to X∼t in the late stage was observed. It was found that the crossover behavior is caused by a change in the rate-limiting process of growth from the free-energy-limited process to the diffusion-limited process. How, then, would the crossover phenomenon be described in terms of the scaling law? We found that the scaling law does not hold in the early stage owing to the characteristic length attributable to the free energy difference between the sol-gel phases, but it does in the late stage. We also discussed the analysis method for the crossover in terms of the scaling law.
Collapse
Affiliation(s)
- Takao Yamamoto
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
3
|
Furusawa K, Kawahana Y, Miyashita R. Construction of Engineered Muscle Tissue Consisting of Myotube Bundles in a Collagen Gel Matrix. Gels 2023; 9:gels9020141. [PMID: 36826311 PMCID: PMC9956229 DOI: 10.3390/gels9020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue engineering methods that aim to mimic the hierarchical structure of skeletal muscle tissue have been widely developed due to utilities in various fields of biology, including regenerative medicine, food technology, and soft robotics. Most methods have aimed to reproduce the microscopical morphology of skeletal muscles, such as the orientation of myotubes and the sarcomere structure, and there is still a need to develop a method to reproduce the macroscopical morphology. Therefore, in this study, we aim to establish a method to reproduce the macroscopic morphology of skeletal muscle by constructing an engineered muscle tissue (EMT) by culturing embryonic chicken myoblast-like cells that are unidirectionally aligned in collagen hydrogels with micro-channels (i.e., MCCG). Whole mount fluorescent imaging of the EMT showed that the myotubes were unidirectionally aligned and that they were bundled in the collagen gel matrix. The myotubes contracted in response to periodic electrostimulations with a frequency range of 0.5-2.0 Hz, but not at 5.0 Hz. Compression tests of the EMT showed that the EMT had anisotropic elasticity. In addition, by measuring the relaxation moduli of the EMTs, an anisotropy of relaxation strengths was observed. The observed anisotropies could be attributed to differences in maturation and connectivity of myotubes in the directions perpendicular and parallel to the long axis of the micro-channels of the MCCG.
Collapse
|
4
|
Mredha MTI, Tran VT, Jeong SG, Seon JK, Jeon I. A diffusion-driven fabrication technique for anisotropic tubular hydrogels. SOFT MATTER 2018; 14:7706-7713. [PMID: 30187062 DOI: 10.1039/c8sm01235k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A bio-inspired, simple, and versatile diffusion-driven method to fabricate complex tubular hydrogels is reported. The controlled diffusion of small ions from a pre-designed core hydrogel through a biopolymer reservoir solution causes the self-gelation of biopolymers with an anisotropic ordered structure on the surface of the core hydrogel. By controlling the concentration, diffusion time, and flow direction of the ions, as well as the size and shape of the core, various types of complex tubular-shaped hydrogels with well-defined 3D architectures were fabricated. The mechanical properties of the designed alginate-based tubular hydrogels were highly tunable and comparable to those of native blood vessels. The method was applied to form a living-cell encapsulated tubular hydrogel, which further strengthens its potential for biomedical applications. The method is suitable for biopolymer-based reaction-diffusion systems and available for further research on the fabrication of functional biomaterials with various biopolymers.
Collapse
Affiliation(s)
- Md Tariful Islam Mredha
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | | | | | | | | |
Collapse
|
5
|
Cera L, Schalley CA. Under Diffusion Control: from Structuring Matter to Directional Motion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707029. [PMID: 29931699 DOI: 10.1002/adma.201707029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Self-organization in synthetic chemical systems is quickly developing into a powerful strategy for designing new functional materials. As self-organization requires the system to exist far from thermodynamic equilibrium, chemists have begun to go beyond the classical equilibrium self-assembly that is often applied in bottom-up supramolecular synthesis, and to learn about the surprising and unpredicted emergent properties of chemical systems that are characterized by a higher level of complexity and extended reactivity networks. The present review focuses on self-organization in reaction-diffusion systems. Selected examples show how the emergence of complex morphogenesis is feasible in synthetic systems leading to hierarchically and nanostructured matter. Starting from well-investigated oscillating reactions, recent developments extend diffusion-limited reactivity to supramolecular systems. The concept of dynamic instability is introduced and illustrated as an additional tool for the design of smart materials and actuators, with emphasis on the realization of motion even at the macroscopic scale. The formation of spatio-temporal patterns along diffusive chemical gradients is exploited as the main channel to realize symmetry breaking and therefore anisotropic and directional mechanical transformations. Finally, the interaction between external perturbations and chemical gradients is explored to give mechanistic insights in the design of materials responsive to external stimuli.
Collapse
Affiliation(s)
- Luca Cera
- Institut für Chemie und Biochemie der Freien Universität, Takustr. 3, 14195, Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie der Freien Universität, Takustr. 3, 14195, Berlin, Germany
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
6
|
Dobashi T, Yamamoto T. Analysis of Heterogeneous Gelation Dynamics and Their Application to Blood Coagulation. Gels 2018; 4:E59. [PMID: 30674835 PMCID: PMC6209283 DOI: 10.3390/gels4030059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023] Open
Abstract
We present a scaling model based on a moving boundary picture to describe heterogeneous gelation dynamics. The dynamics of gelation induced by different gelation mechanisms is expressed by the scaled equation for the time taken for development of the gel layer with a few kinetic coefficients characterizing the system. The physical meaning obtained by the analysis for a simple boundary condition from the standpoint of the phase transition shows that the time development of the gelation layer depends on whether the dynamics of the order parameter expressing the gelation of the polymer solution is fast or slow compared with the diffusion of the gelators in the heterogeneous gelation. The analytical method is used to understand the coagulation of blood from various animals. An experiment using systems with plasma coagulation occurring at interfaces with calcium chloride solution and with packed erythrocytes is performed to provide the data for model fitting and it is clarified that a few key kinetic coefficients in plasma coagulation can be estimated from the analysis of gelation dynamics.
Collapse
Affiliation(s)
- Toshiaki Dobashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | - Takao Yamamoto
- Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
7
|
Maki Y, Furusawa K, Yamamoto T, Dobashi T. Structure formation in biopolymer gels induced by diffusion of gelling factors. ACTA ACUST UNITED AC 2018. [DOI: 10.17106/jbr.32.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yasuyuki Maki
- Department of Chemistry, Faculty of Science, Kyushu University
| | | | - Takao Yamamoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| | - Toshiaki Dobashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| |
Collapse
|
8
|
Maki Y, Furusawa K, Yasuraoka S, Okamura H, Hosoya N, Sunaga M, Dobashi T, Sugimoto Y, Wakabayashi K. Universality and specificity in molecular orientation in anisotropic gels prepared by diffusion method. Carbohydr Polym 2014; 108:118-26. [DOI: 10.1016/j.carbpol.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/12/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
9
|
Furusawa K, Sato S, Masumoto JI, Hanazaki Y, Maki Y, Dobashi T, Yamamoto T, Fukui A, Sasaki N. Studies on the Formation Mechanism and the Structure of the Anisotropic Collagen Gel Prepared by Dialysis-Induced Anisotropic Gelation. Biomacromolecules 2011; 13:29-39. [DOI: 10.1021/bm200869p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuya Furusawa
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo,
Hokkaido, Japan
| | - Shoichi Sato
- Transdisciplinary
Life Science
Course, Graduate School of Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo, Hokkaido, Japan
| | - Jyun-ichi Masumoto
- Transdisciplinary
Life Science
Course, Graduate School of Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo, Hokkaido, Japan
| | - Yohei Hanazaki
- Transdisciplinary
Life Science
Course, Graduate School of Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo, Hokkaido, Japan
| | - Yasuyuki Maki
- Department of Chemistry
and Chemical Biology, Graduate School of Engineering, Gunma University, Tenjincho 1-5-1, Kiryu, Gunma, Japan
| | - Toshiaki Dobashi
- Department of Chemistry
and Chemical Biology, Graduate School of Engineering, Gunma University, Tenjincho 1-5-1, Kiryu, Gunma, Japan
| | - Takao Yamamoto
- Department of Chemistry
and Chemical Biology, Graduate School of Engineering, Gunma University, Tenjincho 1-5-1, Kiryu, Gunma, Japan
| | - Akimasa Fukui
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo,
Hokkaido, Japan
| | - Naoki Sasaki
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku Kita 10 Nishi 8, Sapporo,
Hokkaido, Japan
| |
Collapse
|
10
|
Wu ZL, Kurokawa T, Sawada D, Hu J, Furukawa H, Gong JP. Anisotropic Hydrogel from Complexation-Driven Reorientation of Semirigid Polyanion at Ca2+ Diffusion Flux Front. Macromolecules 2011. [DOI: 10.1021/ma2001228] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zi Liang Wu
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
- Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| | - Daisuke Sawada
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Hu
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hidemitsu Furukawa
- Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|