1
|
Crucial role of alkali metal ions and Si/Al ratio in selective adsorption of 1-octene using faujasite zeolites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
2
|
Vermeeren P, Brinkhuis F, Hamlin TA, Bickelhaupt FM. How Alkali Cations Catalyze Aromatic Diels-Alder Reactions. Chem Asian J 2020; 15:1167-1174. [PMID: 32012430 PMCID: PMC7187256 DOI: 10.1002/asia.202000009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Indexed: 12/04/2022]
Abstract
We have quantum chemically studied alkali cation-catalyzed aromatic Diels-Alder reactions between benzene and acetylene forming barrelene using relativistic, dispersion-corrected density functional theory. The alkali cation-catalyzed aromatic Diels-Alder reactions are accelerated by up to 5 orders of magnitude relative to the uncatalyzed reaction and the reaction barrier increases along the series Li+ < Na+ < K+ < Rb+ < Cs+ < none. Our detailed activation strain and molecular-orbital bonding analyses reveal that the alkali cations lower the aromatic Diels-Alder reaction barrier by reducing the Pauli repulsion between the closed-shell filled orbitals of the dienophile and the aromatic diene. We argue that such Pauli mechanism behind Lewis-acid catalysis is a more general phenomenon. Also, our results may be of direct importance for a more complete understanding of the network of competing mechanisms towards the formation of polycyclic aromatic hydrocarbons (PAHs) in an astrochemical context.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Francine Brinkhuis
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
3
|
Pouya Karimi. Comparison of Cation-π and Anion-π Interactions by Way of Antiaromaticity. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Goli M, Shahbazian S. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules. Phys Chem Chem Phys 2018; 20:16749-16760. [PMID: 29881845 DOI: 10.1039/c8cp02489h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.
Collapse
Affiliation(s)
- Mohammad Goli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran.
| | | |
Collapse
|
5
|
Charry J, Pedraza-González L, Reyes A. On the physical interpretation of the nuclear molecular orbital energy. J Chem Phys 2017; 146:214103. [PMID: 28576090 PMCID: PMC5453789 DOI: 10.1063/1.4984098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
Collapse
Affiliation(s)
- Jorge Charry
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| | - Laura Pedraza-González
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Ave. Cra. 30 #45-03, Bogotá, Colombia
| |
Collapse
|
6
|
Moncada F, Flores-Moreno R, Reyes A. Theoretical calculation of polarizability isotope effects. J Mol Model 2017; 23:90. [DOI: 10.1007/s00894-017-3236-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022]
|
7
|
Goli M, Shahbazian S. Hidden aspects of the Structural theory of chemistry: MC-QTAIM analysis reveals "alchemical" transformation from a triatomic to a diatomic structure. Phys Chem Chem Phys 2015; 17:245-55. [PMID: 25388361 DOI: 10.1039/c4cp03722g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Structural theory of chemistry introduces chemical/molecular structure as a combination of relative arrangement and bonding patterns of atoms in a molecule. Nowadays, the structure of atoms in molecules is derived from the topological analysis of the quantum theory of atoms in molecules (QTAIM). In this context, a molecular structure is varied by large geometrical variations and concomitant reorganization of electronic structure that usually take place in chemical reactions or under extreme hydrostatic pressure. In this report, a new mode of structural variation is introduced within the context of the newly proposed multi-component QTAIM (MC-QTAIM) that originates from the mass variation of nuclei. Accordingly, XCN and CNX series of species are introduced where X stands for a quantum particle with a unit of positive charge and a variable mass that is varied in discrete steps between the mass of a proton and a positron. Ab initio non-Born-Oppenheimer (non-BO) calculations are done on both series of species and the resulting non-BO wavefunctions are used for the MC-QTAIM analysis, revealing a triatomic structure for the proton mass and a diatomic structure for the positron mass. In both series of species, a critical mass between that of proton and positron mass is discovered where the transition from triatomic to diatomic structure takes place. This abrupt structural transformation has a topological nature resembling the usual phase transitions in thermodynamics. The discovered mass-induced structural transformation is a hidden aspect of the Structural theory which is revealed only beyond the BO paradigm, when nuclei are treated as quantum waves instead of clamped point charges.
Collapse
Affiliation(s)
- Mohammad Goli
- Faculty of Chemistry, Shahid Beheshti University, G. C., Evin, P.O. Box 19395-4716, Tehran, Iran19839.
| | | |
Collapse
|
8
|
Romero J, Charry JA, Flores-Moreno R, Varella MTDN, Reyes A. Calculation of positron binding energies using the generalized any particle propagator theory. J Chem Phys 2014; 141:114103. [DOI: 10.1063/1.4895043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan Romero
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá, Colombia
| | - Jorge A. Charry
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá, Colombia
| | - Roberto Flores-Moreno
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara Jal., C. P. 44430, Mexico
| | | | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá, Colombia
- Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Romero J, Restrepo A, Reyes A. Solvent isotope effects on the hydration of alkaline cations: H/D secondary isotope effects on electrostatic interactions. Mol Phys 2013. [DOI: 10.1080/00268976.2013.850543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Aguirre NF, Villarreal P, Delgado-Barrio G, Posada E, Reyes A, Biczysko M, Mitrushchenkov AO, de Lara-Castells MP. Including nuclear quantum effects into highly correlated electronic structure calculations of weakly bound systems. J Chem Phys 2013; 138:184113. [DOI: 10.1063/1.4803546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 739] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
12
|
Goli M, Shahbazian S. The two-component quantum theory of atoms in molecules (TC-QTAIM): foundations. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1208-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
|
14
|
Ikabata Y, Imamura Y, Nakai H. Interpretation of intermolecular geometric isotope effect in hydrogen bonds: nuclear orbital plus molecular orbital study. J Phys Chem A 2011; 115:1433-9. [PMID: 21306139 DOI: 10.1021/jp111062n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermolecular geometric isotope effect (GIE) in hydrogen bond A-X···B (X = H and D) is investigated theoretically using the nuclear orbital plus molecular orbital (NOMO) theory. To interpret the GIE in terms of physically meaningful energy components such as electrostatic and exchange-repulsion interactions, the reduced variational space self-consistent-field method is extended to the NOMO scheme. The intermolecular GIE is analyzed as a two-stage process: the intramolecular bond shrinkage and the intermolecular bond elongation. According to the isotopic shifts of energy components described by the NOMO/MP2 method, the intermolecular GIE is approximately interpreted as a process reducing the exchange-repulsion interaction after the decrease of electrostatic interaction.
Collapse
Affiliation(s)
- Yasuhiro Ikabata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University , Tokyo 169-8555, Japan
| | | | | |
Collapse
|