1
|
Besli N, Ercin N, Carmena-Bargueño M, Sarikamis B, Kalkan Cakmak R, Yenmis G, Pérez-Sánchez H, Beker M, Kilic U. Research into how carvacrol and metformin affect several human proteins in a hyperglycemic condition: A comparative study in silico and in vitro. Arch Biochem Biophys 2024; 758:110062. [PMID: 38880320 DOI: 10.1016/j.abb.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11β1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.
Collapse
Affiliation(s)
- Nail Besli
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Nilufer Ercin
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Guadalupe, Spain.
| | - Bahar Sarikamis
- Department of Medical Biology, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
| | - Rabia Kalkan Cakmak
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey; Department of Medical Biology, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
| | - Guven Yenmis
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey.
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Guadalupe, Spain.
| | - Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Ulkan Kilic
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey; Department of Medical Biology, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
2
|
Liu B, Ding J, Liu Y, Wu J, Wu X, Chen Q, Li W. Elucidating the potential effects of point mutations on FGFR3 inhibitor resistance via combined molecular dynamics simulation and community network analysis. J Comput Aided Mol Des 2023; 37:325-338. [PMID: 37269435 DOI: 10.1007/s10822-023-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
FGFR3 kinase mutations are associated with a variety of malignancies, but FGFR3 mutant inhibitors have rarely been studied. Furthermore, the mechanism of pan-FGFR inhibitors resistance caused by kinase domain mutations is still unclear. In this study, we try to explain the mechanism of drug resistance to FGFR3 mutation through global analysis and local analysis based on molecular dynamics simulation, binding free energy analysis, umbrella sampling and community network analysis. The results showed that FGFR3 mutations caused a decrease in the affinity between drugs and FGFR3 kinase, which was consistent with the reported experimental results. Possible mechanisms are that mutations affect drug-protein affinity by altering the environment of residues near the hinge region where the protein binds to the drug, or by affecting the A-loop and interfering with the allosteric communication networks. In conclusion, we systematically elucidated the underlying mechanism of pan-FGFR inhibitor resistance caused by FGFR3 mutation based on molecular dynamics simulation strategy, which provided theoretical guidance for the development of FGFR3 mutant kinase inhibitors.
Collapse
Affiliation(s)
- Bo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Juntao Ding
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yugang Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Qian Chen
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
| | - Wulan Li
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
4
|
Oliveira NFB, Rodrigues FEP, Vitorino JNM, Loureiro RJS, Faísca PFN, Machuqueiro M. Predicting stable binding modes from simulated dimers of the D76N mutant of β 2-microglobulin. Comput Struct Biotechnol J 2021; 19:5160-5169. [PMID: 34630936 PMCID: PMC8473664 DOI: 10.1016/j.csbj.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
β2m D76N mutant populates an aggregation-prone monomer (I2) with unstructured termini. MD and MM-PBSA indicate that I2 dimers are stabilized by hydrophobic interactions. The termini regions and BC- and DE-loops are prevalent in the most stable interfaces. The most stable dimer has a limited growth potential without structural rearrangement.
The D76N mutant of the β2m protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein–protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.
Collapse
Affiliation(s)
- Nuno F B Oliveira
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Filipe E P Rodrigues
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - João N M Vitorino
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Rui J S Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Patrícia F N Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Physics, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| |
Collapse
|
5
|
Tsurko J, Kunz W. SALTING-IN AND SALTING-OUT EFFECTS OF POLYPHENOLS, AROMATIC COMPOUNDS, AND AMINO ACIDS ON POLY (N-ISOPROPYLACRYLAMIDE) AND EGG WHITE AQUEOUS SOLUTIONS. SCIENCE AND INNOVATION 2021. [DOI: 10.15407/scine17.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction. Understanding the biophysical phenomena related to the Hofmeister series or cosmotropic/chaotropic properties of ions requires experimental data on specific ion effects of large organic molecules.Problem Statement. Specific ion effects are of significant importance for biophysics and medicine. It is interesting to find out if additives with biologically relevant anions can interact with proteins and avoid aggregation.Purpose. The purpose of this research is to study the stabilizing/destabilizing effects in Poly(N-isopropylacrylamide) (PNIPAM)/water, hen egg white/water systems under influence of substances of various classes of different hydrophobia.Materials and Methods. Materials: sodium salts: salicylate, ferulate, benzoate, vanillate, cinnamate; humic acid sodium salt, hydroxy-sodium benzoate, glycine, L-alanine, sodium L-glutamate, D-(—)-quinnic acid, PNIPAM, egg white. Methods: measurement of the transition temperature (TT) of PNIPAM/water and the denaturationtemperature of the egg white / water systems.Results. Ion-specific effects have been studied with the use of models based on the research of the transition temperature (TT) evolution of binary PNIPAM / water mixtures (for heating from 0 to 35°C) and the denaturation temperature of the egg white / water (for heating from 48 to 65°C). The dependences of these temperatureson the content of substances that occur in live nature have been received at pH = 7.4.Conclusions. The results have shown the tendencies of the additive solubilizing effects on PNIPAM and egg white. The majority of substances studied has the salting-out effect on PNIPAM / water in the order NaBz ~ NaCinn < L-NaGlu ~ NaFer. For NaSal and NaHum; the salting-in effect has been established. For the egg white, all additives show the salting-in effect. In PNIPAM and egg white systems, NaBz and L-NaGlu demonstrate the opposite effects.
The results have been compared with the ones for binary mixtures of water/di-propylene glycolpropyl ether (DPnP).
Collapse
|
6
|
Palaniappan C, Narayanan RC, Sekar K. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2810-2819. [PMID: 34296847 DOI: 10.1021/acschemneuro.1c00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrPC remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrPC to the toxic PrPSc. The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the β1-α1-β2 subdomain, including an unfolding of a helix α1 and the elongation of the β-sheet. These unusual structural changes likely appeared to detach the β1-α1-β2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrPC to PrPSc. Ultimately, the unfolded α1 and its prior β1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable β1-α1-β2 subdomain, thereby enhancing the aggregation of misfolded PrPC through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant β1-α1-β2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrPC misfolding associated with the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
| | - Rahul C. Narayanan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
7
|
Singh H, Bharadvaja N. Treasuring the computational approach in medicinal plant research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:19-32. [PMID: 34004233 DOI: 10.1016/j.pbiomolbio.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/24/2023]
Abstract
Medicinal plants serve as a valuable source of secondary metabolites since time immemorial. Computational Research in 21st century is giving more attention to medicinal plants for new drug design as pharmacological screening of bioactive compound was time consuming and expensive. Computational methods such as Molecular Docking, Molecular Dynamic Simulation and Artificial intelligence are significant Insilico tools in medicinal plant research. Molecular docking approach exploits the mechanism of potential phytochemicals into the target active site to elucidate its interactions and biological therapeutic properties. MD simulation illuminates the dynamic behavior of biomolecules at atomic level with fine quality representation of biomolecules. Dramatical advancement in computer science is illustrating the biological mechanism via these tools in different diseases treatment. The advancement comprises speed, the system configuration, and other software upgradation to insights into the structural explanation and optimization of biomolecules. A probable shift from simulation to artificial intelligence has in fact accelerated the art of scientific study to a sky high. The most upgraded algorithm in artificial intelligence such as Artificial Neural Networks, Deep Neural Networks, Neuro-fuzzy Logic has provided a wide opportunity in easing the time required in classical experimental strategy. The notable progress in computer science technology has paved a pathway for understanding the pharmacological functions and creating a roadmap for drug design and development and other achievement in the field of medicinal plants research. This review focus on the development and overview in computational research moving from static molecular docking method to a range of dynamic simulation and an advanced artificial intelligence such as machine learning.
Collapse
Affiliation(s)
- Harshita Singh
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
8
|
Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein. Front Cell Neurosci 2020; 14:254. [PMID: 33013324 PMCID: PMC7461849 DOI: 10.3389/fncel.2020.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of neurodegenerative diseases endemic in humans and several ruminants caused by the misfolding of native prion protein (PrP) into pathological conformations. Experimental work and the mad-cow epidemic of the 1980s exposed a wide spectrum of animal susceptibility to prion diseases, including a few highly resistant animals: horses, rabbits, pigs, and dogs/canids. The variable susceptibility to disease offers a unique opportunity to uncover the mechanisms governing PrP misfolding, neurotoxicity, and transmission. Previous work indicates that PrP-intrinsic differences (sequence) are the main contributors to disease susceptibility. Several residues have been cited as critical for encoding PrP conformational stability in prion-resistant animals, including D/E159 in dog, S167 in horse, and S174 in rabbit and pig PrP (all according to human numbering). These amino acids alter PrP properties in a variety of assays, but we still do not clearly understand the structural correlates of PrP toxicity. Additional insight can be extracted from comparative structural studies, followed by molecular dynamics simulations of selected mutations, and testing in manipulable animal models. Our working hypothesis is that protective amino acids generate more compact and stable structures in a C-terminal subdomain of the PrP globular domain. We will explore this idea in this review and identify subdomains within the globular domain that may hold the key to unravel how conformational stability and disease susceptibility are encoded in PrP.
Collapse
Affiliation(s)
- Ryan Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
9
|
Xu Z, Liu H, Wang S, Zhang Q, Yao X, Zhou S, Liu H. Unraveling the Molecular Mechanism of Prion H2 C-Terminus Misfolding by Metadynamics Simulations. ACS Chem Neurosci 2020; 11:772-782. [PMID: 32023408 DOI: 10.1021/acschemneuro.9b00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational transition from the normal cellular form of prion protein (PrPC) to the pathogenic "scrapie" form (PrPSc) is considered to be a key event in the occurrence of prion disease. Additionally, the H2 C-terminus is widely considered to be a vital site for PrP conformational transition, which can be used as an important region to explore the potential mechanism of PrP misfolding. Therefore, to study the misfolding mechanism of PrP, 500 ns well-tempered metadynamics simulations were performed by focusing on the H2 C-terminus of PrP. For comparison, three systems were designed in total, including PrP in neutral and acidic conditions, as well as H187R mutant. The resulting free energy surfaces (FESs) obtained from metadynamics simulations reveal that acidic conditions and H187R mutation can facilitate PrP misfolding by decreasing free energy barriers for conformational transition and forming energy stable conformational states. Further analyses aimed at H2 C-terminus show that due to the increase of positive charge on residue 187 in both acidic and H187R systems, the electrostatic repulsion of residue 187 and R136/R156 increases greatly, which disrupts the electrostatic interaction network around H2 C-terminus and exposes the hydrophobic core to the solvent. Taken together, acidic conditions and H187R mutation can accelerate PrP misfolding mainly by forming more energetically stable metastable conformations with lower free energy barriers, and electrostatic network disruption involving residue 187 drives the initial misfolding of H2 C-terminus. This study provides quantitative insight into the related function of the H2 C-terminus in the PrP misfolding process, which may guide H2 C-terminus mediated drug design in the future.
Collapse
Affiliation(s)
- Zerong Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Theoretical and computational advances in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:1-31. [PMID: 31928722 DOI: 10.1016/bs.apcsb.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Misfolded proteins escape the cellular quality control mechanism and fail to fold properly or remain correctly folded leading to a loss in their functional specificity. Thus misfolding of proteins cause a large number of very different diseases ranging from errors in metabolism to various types of complex neurodegenerative diseases. A theoretical and computational perspective of protein misfolding is presented with a special emphasis on its salient features, mechanism and consequences. These insights quantitatively analyze different determinants of misfolding, that may be applied to design disease specific molecular targets.
Collapse
|
11
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
12
|
Zhou S, Shi D, Liu X, Yao X, Da LT, Liu H. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2019; 10:2718-2729. [PMID: 31070897 DOI: 10.1021/acschemneuro.8b00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the β2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-β2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Liguori N, Campos SRR, Baptista A, Croce R. Molecular Anatomy of Plant Photoprotective Switches: The Sensitivity of PsbS to the Environment, Residue by Residue. J Phys Chem Lett 2019; 10:1737-1742. [PMID: 30908067 PMCID: PMC6477805 DOI: 10.1021/acs.jpclett.9b00437] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 05/15/2023]
Abstract
Under strong sunlight, plants avoid photooxidation by quenching the excess absorbed energy. Quenching is triggered by PsbS, a membrane protein that is activated and deactivated by the light-dependent pH changes in the thylakoid lumen. The mechanism of action of this protein is unknown, but it was suggested that several glutamates act as pH sensors. However, the p Ka of glutamate is several pH units below the physiological values in the lumen. Thus, how can PsbS sense the pH of the lumen, and how does it respond to it? By applying a nonstandard molecular dynamics method that treats pH explicitly, we show that the lumen-exposed glutamates of PsbS have strongly shifted p Ka values and that such shifts are crucial for the pH sensitivity in physiological conditions. We also demonstrate that protonation drives a systematic unfolding of a region key for protein-protein interactions, indicating that PsbS response to pH is a functional conformational switch.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department
of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Sara R. R. Campos
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António
M. Baptista
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Roberta Croce
- Department
of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Silva TFD, Vila-Viçosa D, Reis PBPS, Victor BL, Diem M, Oostenbrink C, Machuqueiro M. The Impact of Using Single Atomistic Long-Range Cutoff Schemes with the GROMOS 54A7 Force Field. J Chem Theory Comput 2018; 14:5823-5833. [DOI: 10.1021/acs.jctc.8b00758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tomás F. D. Silva
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Pedro B. P. S. Reis
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Bruno L. Victor
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Matthias Diem
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Thompson HN, Thompson CE, Andrade Caceres R, Dardenne LE, Netz PA, Stassen H. Prion protein conversion triggered by acidic condition: a molecular dynamics study through different force fields. J Comput Chem 2018; 39:2000-2011. [DOI: 10.1002/jcc.25380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Helen Nathalia Thompson
- Departamento de Físico-Química, Instituto de Química; Universidade Federal do Rio Grande do Sul; 91501-970 Porto Alegre Rio Grande do Sul Brazil
| | - Claudia Elizabeth Thompson
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre; 90050-170 Porto Alegre Rio Grande do Sul Brazil
| | - Rafael Andrade Caceres
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre; 90050-170 Porto Alegre Rio Grande do Sul Brazil
| | | | - Paulo Augusto Netz
- Departamento de Físico-Química, Instituto de Química; Universidade Federal do Rio Grande do Sul; 91501-970 Porto Alegre Rio Grande do Sul Brazil
| | - Hubert Stassen
- Departamento de Físico-Química, Instituto de Química; Universidade Federal do Rio Grande do Sul; 91501-970 Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
16
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
17
|
Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L, Wu J, Yao H, Lin D. Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep 2018; 8:13211. [PMID: 30181558 PMCID: PMC6123418 DOI: 10.1038/s41598-018-31394-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are caused by the propagation of misfolded cellular prion proteins (PrPs). A completely prion disease-resistant genotype, V127M129, has been identified in Papua New Guinea and verified in transgenic mice. To disclose the structural basis of the disease-resistant effect of the G127V mutant, we determined and compared the structural and dynamic features of the G127V-mutated human PrP (residues 91-231) and the wild-type PrP in solution. HuPrP(G127V) contains α1, α2 and α3 helices and a stretch-strand (SS) pattern comprising residues Tyr128-Gly131 (SS1) and Val161-Arg164 (SS2), with extending atomic distances between the SS1 and SS2 strands, and a structural rearrangement of the Tyr128 side chain due to steric hindrance of the larger hydrophobic side chain of Val127. The extended α1 helix gets closer to the α2 and α3 helices. NMR dynamics analysis revealed that Tyr128, Gly131 and Tyr163 underwent significant conformational exchanges. Molecular dynamics simulations suggest that HuPrP(G127V) prevents the formation of stable β-sheets and dimers. Unique structural and dynamic features potentially inhibit the conformational conversion of the G127V mutant. This work is beneficial for understanding the molecular mechanisms underlying the complete resistance of the G127V mutant to prion disease and for developing new therapeutics for prion disease.
Collapse
Affiliation(s)
- Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongsheng Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Feng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jihui Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
18
|
Gao Y, Zhu T, Zhang C, Zhang JZ, Mei Y. Comparison of the unfolding and oligomerization of human prion protein under acidic and neutral environments by molecular dynamics simulations. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Lima AN, de Oliveira RJ, Braz ASK, de Souza Costa MG, Perahia D, Scott LPB. Effects of pH and aggregation in the human prion conversion into scrapie form: a study using molecular dynamics with excited normal modes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:583-590. [PMID: 29546436 DOI: 10.1007/s00249-018-1292-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer β-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in β-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.
Collapse
Affiliation(s)
- Angelica Nakagawa Lima
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - David Perahia
- Laboratorie de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Luis Paulo Barbour Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|
20
|
Reis PPS, Vila-Viçosa D, Campos SRR, Baptista A, Machuqueiro M. Role of Counterions in Constant-pH Molecular Dynamics Simulations of PAMAM Dendrimers. ACS OMEGA 2018; 3:2001-2009. [PMID: 30023821 PMCID: PMC6045380 DOI: 10.1021/acsomega.7b01708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/08/2018] [Indexed: 05/25/2023]
Abstract
Electrostatic interactions play a pivotal role in the structure and mechanism of action of most biomolecules. There are several conceptually different methods to deal with electrostatics in molecular dynamics simulations. Ionic strength effects are usually introduced using such methodologies and can have a significant impact on the quality of the final conformation space obtained. We have previously shown that full system neutralization can lead to wrong lipidic phases in the 25% PA/PC bilayer (J. Chem. Theory Comput. 2014,10, 5483-5492). In this work, we investigate how two limit approaches to the ionic strength treatment (implicitly with GRF or using full system neutralization with either GRF or PME) can influence the conformational space of the second-generation PAMAM dendrimer. Constant-pH MD simulations were used to map PAMAM's conformational space at its full pH range (from 2.5 to 12.5). Our simulations clearly captured the coupling between protonation and conformation in PAMAM. Interestingly, the dendrimer conformational distribution was almost independent of the ionic strength treatment methods, which is in contrast to what we have observed in charged lipid bilayers. Overall, our results confirm that both GRF with implicit ionic strength and a fully neutralized system with PME are valid approaches to model charged globular systems, using the GROMOS 54A7 force field.
Collapse
Affiliation(s)
- Pedro
B. P. S. Reis
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sara R. R. Campos
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António
M. Baptista
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Chae CG, Seo HB, Bak IG, Lee JS. Synthesis of Amphiphilic Helix–Coil–Helix Poly(3-(glycerylthio)propyl isocyanate)-block-polystyrene-block-poly(3-(glycerylthio)propyl isocyanate). Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chang-Geun Chae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In-Gyu Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
22
|
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2017; 13:23-37. [DOI: 10.1080/17460441.2018.1403419] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Barroso daSilva FL, Dias LG. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 2017; 9:699-728. [PMID: 28921104 PMCID: PMC5662048 DOI: 10.1007/s12551-017-0311-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.
Collapse
Affiliation(s)
- Fernando Luís Barroso daSilva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903, Ribeirão Preto, SP, Brazil.
- UCD School of Physics, UCD Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Luis Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes, 3900 - Universidade de São Paulo, BR-14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2-microglobulin. Proteins 2017; 85:2045-2057. [DOI: 10.1002/prot.25358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rui J. S. Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology; Harvard University; Cambridge Massachusetts
| | - Patricia F. N. Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
- Departamento de Física; Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
25
|
Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. J Mol Biol 2017; 429:886-899. [DOI: 10.1016/j.jmb.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
26
|
Pagadala NS, Syed K, Bhat R. In silico strategies on prion pathogenic conversion and inhibition from PrPC–PrPSc. Expert Opin Drug Discov 2017; 12:241-248. [DOI: 10.1080/17460441.2017.1287171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nataraj S. Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Rakesh Bhat
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
27
|
Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of Unfolding of Human Prion Protein. J Phys Chem B 2017; 121:550-564. [PMID: 28030950 DOI: 10.1021/acs.jpcb.6b11416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrPC) form needs to undergo substantial unfolding to a more stable PrPC* state, which may further oligomerize into the toxic scrapie (PrPSc) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrPC* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrPSc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrPC form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Reman K Singh
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| | - Neharika G Chamachi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| |
Collapse
|
28
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Sharma A, Smith JD, Walters KB, Rick SW. Constant pH simulations of pH responsive polymers. J Chem Phys 2016; 145:234906. [DOI: 10.1063/1.4972062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Arjun Sharma
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - J. D. Smith
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Keisha B. Walters
- School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| |
Collapse
|
30
|
Kumar R. Analysis of the pH-dependent thermodynamic stability, local motions, and microsecond folding kinetics of carbonmonoxycytochrome c. Arch Biochem Biophys 2016; 606:16-25. [DOI: 10.1016/j.abb.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/11/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
31
|
McHugh SM, Rogers JR, Yu H, Lin YS. Insights into How Cyclic Peptides Switch Conformations. J Chem Theory Comput 2016; 12:2480-8. [DOI: 10.1021/acs.jctc.6b00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean M. McHugh
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Julia R. Rogers
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Hongtao Yu
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
32
|
Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep 2016; 6:21804. [PMID: 26906032 PMCID: PMC4764842 DOI: 10.1038/srep21804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant.
Collapse
|
33
|
Magalhães PR, Machuqueiro M, Baptista AM. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer. Biophys J 2016; 108:2282-90. [PMID: 25954885 DOI: 10.1016/j.bpj.2015.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022] Open
Abstract
To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab.
Collapse
Affiliation(s)
- Pedro R Magalhães
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
34
|
Singh J, Udgaonkar JB. Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. J Mol Biol 2016; 428:1345-1355. [PMID: 26854758 DOI: 10.1016/j.jmb.2016.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
The misfolding of the prion protein (PrP) to aggregated forms is linked to several neurodegenerative diseases. Misfolded oligomeric forms of PrP are associated with neurotoxicity and/or infectivity, but the molecular mechanism by which they form is still poorly understood. A reduction in pH is known to be a key factor that triggers misfolded oligomer formation by PrP, but the residues whose protonation is linked with misfolding remain unidentified. The structural consequences of the protonation of these residues also remain to be determined. In the current study, amino acid residues whose protonation is critical for PrP misfolding and oligomerization have been identified using site-directed mutagenesis and misfolding/oligomerization assays. It is shown that the protonation of either H186 or D201, which mimics the effects of pathogenic mutations (H186R and D201N) at both residue sites, is critically linked to the stability, misfolding and oligomerization of PrP. Hydrogen-deuterium exchange studies coupled with mass spectrometry show that the protonation of either H186 or D201 leads to the same common structural change: increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2. It is shown that the protonation of either of these residues is sufficient for accelerating misfolded oligomer formation, most likely because the protonation of either residue causes the same structural perturbation. Hence, the increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2 appear to play an early critical role in acid-induced misfolding of PrP.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
35
|
Abstract
Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
36
|
Santos HAF, Vila-Viçosa D, Teixeira VH, Baptista AM, Machuqueiro M. Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers. J Chem Theory Comput 2015; 11:5973-9. [DOI: 10.1021/acs.jctc.5b00956] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - António M. Baptista
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | |
Collapse
|
37
|
Jain R, Kumar R, Kumar S, Chhabra R, Agarwal MC, Kumar R. Analysis of the pH-dependent stability and millisecond folding kinetics of horse cytochrome c. Arch Biochem Biophys 2015; 585:52-63. [DOI: 10.1016/j.abb.2015.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
38
|
A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water. PLoS Comput Biol 2015; 11:e1004480. [PMID: 26506245 PMCID: PMC4624693 DOI: 10.1371/journal.pcbi.1004480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022] Open
Abstract
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. Computer simulation plays an important role to understand molecular systems and has been applied to problems of increasing complexity. Multistate equilibrium is a fundamental concept behind the structure and function of biological systems. Due to the limit in computing resources and lack of good alternative methods, computer simulation has been conducted for systems in a single state, sampling from one state to another to infer equilibrium properties. This sequential approach has been successful in many cases such as protonation equilibrium with implicit solvation model. However, state transition is difficult when explicit solvent is used for more accurate solvation description. Many efforts have been dedicated to overcome this difficulty. Analogous to real multistate systems, we proposed a virtual mixture of multiple states (VMMS) to directly simulate the equilibrium. State transitions are replaced by changes in state molar fractions. Mimicking a test tube environment, all states are simulated in parallel to equilibrate with each other. Application to constant pH simulation in explicit water demonstrates the capability of this method. It is expected that the VMMS method will find more applications in biological problems related to the equilibrium of competing states.
Collapse
|
39
|
Carvalheda CA, Campos SRR, Baptista AM. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics. J Chem Inf Model 2015; 55:2206-17. [PMID: 26397014 DOI: 10.1021/acs.jcim.5b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| | - Sara R R Campos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
40
|
Tao W, Yoon G, Cao P, Eom K, Park HS. β-sheet-like formation during the mechanical unfolding of prion protein. J Chem Phys 2015; 143:125101. [DOI: 10.1063/1.4931819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Weiwei Tao
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Gwonchan Yoon
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Department of Mechanical Engineering, Korea University, Seoul 136-701, South Korea
| | - Penghui Cao
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Harold S. Park
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
41
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
42
|
Flannelly DF, Aoki TG, Aristilde L. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study. J Struct Biol 2015; 191:352-64. [PMID: 26160737 DOI: 10.1016/j.jsb.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/17/2015] [Accepted: 07/03/2015] [Indexed: 12/25/2022]
Abstract
The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.
Collapse
Affiliation(s)
- David F Flannelly
- The Institute for Comparative and Environmental Toxicology, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Thalia G Aoki
- Department of Biological and Environmental Engineering, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ludmilla Aristilde
- The Institute for Comparative and Environmental Toxicology, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Biological and Environmental Engineering, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Vila-Viçosa D, Teixeira VH, Baptista AM, Machuqueiro M. Constant-pH MD Simulations of an Oleic Acid Bilayer. J Chem Theory Comput 2015; 11:2367-76. [DOI: 10.1021/acs.jctc.5b00095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diogo Vila-Viçosa
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edifı́cio C8 Campo Grande, 1749-016 Lisboa, Portugal
| | - Vitor H. Teixeira
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edifı́cio C8 Campo Grande, 1749-016 Lisboa, Portugal
| | - António M. Baptista
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edifı́cio C8 Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
44
|
Vila-Viçosa D, Teixeira VH, Santos HAF, Baptista AM, Machuqueiro M. Treatment of Ionic Strength in Biomolecular Simulations of Charged Lipid Bilayers. J Chem Theory Comput 2014; 10:5483-92. [DOI: 10.1021/ct500680q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Diogo Vila-Viçosa
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vitor H. Teixeira
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo A. F. Santos
- Faculty
of Sciences, BioFIG−Centre for Biodiversity, Functional and
Integrative Genomics, University of Lisboa, 1649-004 Lisboa, Portugal
| | - António M. Baptista
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
45
|
Structural and dynamic properties of the human prion protein. Biophys J 2014; 106:1152-63. [PMID: 24606939 DOI: 10.1016/j.bpj.2013.12.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Prion diseases involve the conformational conversion of the cellular prion protein (PrP(C)) to its misfolded pathogenic form (PrP(Sc)). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrP(C) to PrP(Sc).
Collapse
|
46
|
Yamamoto N. Hot Spot of Structural Ambivalence in Prion Protein Revealed by Secondary Structure Principal Component Analysis. J Phys Chem B 2014; 118:9826-33. [DOI: 10.1021/jp5034245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Norifumi Yamamoto
- Department of Life and Environmental
Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| |
Collapse
|
47
|
Vila-Viçosa D, Francesconi O, Machuqueiro M. Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water? Beilstein J Org Chem 2014; 10:1513-23. [PMID: 25161708 PMCID: PMC4142876 DOI: 10.3762/bjoc.10.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022] Open
Abstract
Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor–mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational space of the receptor is very similar in water above pH 4.0 and in acetonitrile. From the simulations with the mannoside, we observe that the interactions are more specific in acetonitrile (mainly hydrogen bonds) than in water (mainly hydrophobic). Our results suggest that the readiness of the receptor to bind mannoside is not significantly affected in water (above pH 4.0). Probably, the hydrogen bond network that is formed in acetonitrile (which is weaker in water) is the main reason for the higher activity in this solvent. This work also presents a new implementation of the stochastic titration constant-pH molecular dynamics method to a synthetic receptor of sugars and attests its ability to describe the protonation/conformation coupling in these molecules.
Collapse
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Oscar Francesconi
- Dipartimento di Chimica, Università di Firenze, Polo Scientifico e Tecnológico, 50019 Sesto Fiorentino, Firenze, Italy
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
48
|
Chen W, Morrow BH, Shi C, Shen JK. Recent development and application of constant pH molecular dynamics. MOLECULAR SIMULATION 2014; 40:830-838. [PMID: 25309035 DOI: 10.1080/08927022.2014.907492] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Solution pH is a critical environmental factor for chemical and biological processes. Over the last decade, significant efforts have been made in the development of constant pH molecular dynamics (pHMD) techniques for gaining detailed insights into pH-coupled dynamical phenomena. In this article we review the advancement of this field in the past five years, placing a special emphasis on the development of the all-atom continuous pHMD technique. We discuss various applications, including the prediction of pKa shifts for proteins, nucleic acids and surfactant assemblies, elucidation of pH-dependent population shifts, protein-protein and protein-RNA binding, as well as the mechanisms of pH-dependent self-assembly and phase transitions of surfactants and peptides. We also discuss future directions for the further improvement of the pHMD techniques.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Brian H Morrow
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Chuanyin Shi
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jana K Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLoS Comput Biol 2014; 10:e1003606. [PMID: 24809460 PMCID: PMC4014404 DOI: 10.1371/journal.pcbi.1003606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/16/2014] [Indexed: 01/26/2023] Open
Abstract
A major component of ex vivo amyloid plaques of patients with dialysis-related amyloidosis (DRA) is a cleaved variant of β2-microglobulin (ΔN6) lacking the first six N-terminal residues. Here we perform a computational study on ΔN6, which provides clues to understand the amyloidogenicity of the full-length β2-microglobulin. Contrary to the wild-type form, ΔN6 is able to efficiently nucleate fibrillogenesis in vitro at physiological pH. This behavior is enhanced by a mild acidification of the medium such as that occurring in the synovial fluid of DRA patients. Results reported in this work, based on molecular simulations, indicate that deletion of the N-terminal hexapeptide triggers the formation of an intermediate state for folding and aggregation with an unstructured strand A and a native-like core. Strand A plays a pivotal role in aggregation by acting as a sticky hook in dimer assembly. This study further predicts that the detachment of strand A from the core is maximized at pH 6.2 resulting into higher aggregation efficiency. The structural mapping of the dimerization interface suggests that Tyr10, His13, Phe30 and His84 are hot-spot residues in ΔN6 amyloidogenesis. Dialysis-related amyloidosis (DRA) is a conformational disease that affects individuals undergoing long-term haemodialysis. In DRA the progressive accumulation of protein human β2-microglobulin (Hβ2m) in the osteoarticular system, followed by its assembly into amyloid fibrils, eventually leads to tissue erosion and destruction. Disclosing the aggregation mechanism of Hβ2m under physiologically relevant conditions represents a major challenge due to the inability of the protein to efficiently nucleate fibrillogenesis in vitro at physiological pH. On the other hand, ΔN6, a truncated variant of Hβ2m, which is also a major component of ex vivo amyloid deposits extracted from DRA patients, is able to efficiently form amyloid fibrils de novo in physiological conditions. This amyloidogenic behavior is dramatically enhanced in a slightly more acidic pH (6.2) compatible with the mild acidification that occurs in the synovial fluid of DRA patients. In this work, an innovative three-stage methodological approach, relying on an array of molecular simulations, spanning different levels of resolution is used to investigate the initial stage of the de novo aggregation mechanism of ΔN6 in a physiologically relevant pH range. We identify an intermediate state for folding and aggregation, whose potential to dimerize is enhanced at pH 6.2. Our results provide rationalizations for previous experimental observations and new insights into the molecular basis of DRA.
Collapse
Affiliation(s)
- Sílvia G. Estácio
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Heinrich Krobath
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EIS); (PFNF)
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (EIS); (PFNF)
| |
Collapse
|
50
|
Teixeira VH, Vila-Viçosa D, Baptista AM, Machuqueiro M. Protonation of DMPC in a Bilayer Environment Using a Linear Response Approximation. J Chem Theory Comput 2014; 10:2176-84. [DOI: 10.1021/ct5000082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vitor H. Teixeira
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - António M. Baptista
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica, Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|