1
|
Syryamina VN, Afanasyeva EF, Dzuba SA, Formaggio F, De Zotti M. Peptide-membrane binding is not enough to explain bioactivity: A case study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183978. [PMID: 35659865 DOI: 10.1016/j.bbamem.2022.183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation.
| | - Ekaterina F Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University,630090 Novosibirsk, Russian Federation
| | - Fernando Formaggio
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Marta De Zotti
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
2
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
3
|
Guidelli R, Becucci L. Functional activity of peptide ion channels in tethered bilayer lipid membranes: Review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry University of Florence Sesto Fiorentino Firenze Italy
| | - Lucia Becucci
- Ministero dell'Istruzione Scuola Media “Guglielmo Marconi” San Giovanni Valdarno Arezzo Italy
| |
Collapse
|
4
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
5
|
Afanasyeva EF, Syryamina VN, De Zotti M, Formaggio F, Toniolo C, Dzuba SA. Peptide antibiotic trichogin in model membranes: Self-association and capture of fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:524-531. [PMID: 30550880 DOI: 10.1016/j.bbamem.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
The antimicrobial action of peptides in bacterial membranes is commonly related to their mode of self-assembling which results in pore formation. To optimize peptide antibiotic use for therapeutic purposes, a study on the concentration dependence of self-assembling process is thus desirable. In this work, we investigate this dependence for peptaibol trichogin GA IV (Tric) in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane in the range of peptide concentrations between 0.5 and 3.3 mol%. Pulsed double electron-electron resonance (PELDOR) applied on spin-labeled peptide analogs highlights the onset of peptide dimerization above a critical peptide concentration value, namely ~ 2 mol%. Electron spin echo (ESE) envelope modulation (ESEEM) for D2O-hydrated bilayers shows that dimerization is accompanied by peptide re-orientation towards a trans-membrane disposition. For spin-labeled stearic acids (5-DSA) in POPC bilayers, the study of ESE decays and ESEEM in the presence of a deuterated peptide analog indicates that above the critical peptide concentration the 5-DSA molecules are attracted by peptide molecules, forming nanoclusters. As the 5-DSA molecules represent a model for the behavior of fatty acids participating in bacterial membrane homeostasis, such capturing action by Tric may represent an additional mechanism of its antibiotic activity.
Collapse
Affiliation(s)
- Ekaterina F Afanasyeva
- Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
6
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
7
|
Ivanov MY, Krumkacheva OA, Dzuba SA, Fedin MV. Microscopic rigidity and heterogeneity of ionic liquids probed by stochastic molecular librations of the dissolved nitroxides. Phys Chem Chem Phys 2017; 19:26158-26163. [DOI: 10.1039/c7cp04890d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We propose a new potent approach for studying nano/microscopic heterogeneities in ionic liquids exploiting stochastic librations of nitroxides and pulse EPR.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Sergei A. Dzuba
- Novosibirsk State University
- Novosibirsk
- Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
- Novosibirsk
| | - Matvey V. Fedin
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
8
|
Iftemi S, De Zotti M, Formaggio F, Toniolo C, Stella L, Luchian T. Electrophysiology investigation of Trichogin GA IV activity in planar lipid membranes reveals ion channels of well-defined size. Chem Biodivers 2015; 11:1069-77. [PMID: 25044592 DOI: 10.1002/cbdv.201300334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 11/07/2022]
Abstract
Trichogin GA IV, an antimicrobial peptaibol, exerts its function by augmenting membrane permeability, but the molecular aspects of its pore-forming mechanism are still debated. Several lines of evidence indicate a 'barrel-stave' channel structure, similar to that of alamethicin, but the length of a trichogin helix is too short to span a normal bilayer. Herein, we present electrophysiology measurements in planar bilayers, showing that trichogin does form channels of a well-defined size (R=4.2⋅10(9) Ω; corresponding at least to a trimeric aggregate) that span the membrane and allow ion diffusion, but do not exhibit voltage-dependent rectification, unlike those of alamethicin.
Collapse
Affiliation(s)
- Sorana Iftemi
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, 11, Blvd. Carol I, RO-700506 Iasi (phone: +40-232-201191)
| | | | | | | | | | | |
Collapse
|
9
|
Smetanin M, Sek S, Maran F, Lipkowski J. Molecular resolution visualization of a pore formed by trichogin, an antimicrobial peptide, in a phospholipid matrix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3130-6. [DOI: 10.1016/j.bbamem.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
|
10
|
Becucci L, Guidelli R. Mercury-supported biomimetic membranes for the investigation of antimicrobial peptides. Pharmaceuticals (Basel) 2014; 7:136-68. [PMID: 24463343 PMCID: PMC3942690 DOI: 10.3390/ph7020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 11/16/2022] Open
Abstract
Tethered bilayer lipid membranes (tBLMs) consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic "spacer" anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of membrane peptides and proteins. A drawback in the use of mercury-supported tBLMs with respect to gold-supported ones is represented by the difficulty in applying surface sensitive, spectroscopic and scanning probe microscopic techniques to gather information on the architecture of these biomimetic membranes. Nonetheless, mercury-supported tBLMs are definitely superior to gold-supported biomimetic membranes for the investigation of the function of membrane peptides and proteins, thanks to a fluidity and lipid lateral mobility comparable with those of bilayer lipid membranes interposed between two aqueous phases (BLMs), but with a much higher robustness and resistance to electric fields. The different features of mercury-supported tBLMs reconstituted with functionally active membrane proteins and peptides of bacteriological or pharmacological interest may be disclosed by a judicious choice of the most appropriate electrochemical techniques. We will describe the way in which electrochemical impedance spectroscopy, potential-step chronocoulometry, cyclic voltammetry and phase-sensitive AC voltammetry are conveniently employed to investigate the structure of mercury-supported tBLMs and the mode of interaction of antimicrobial peptides reconstituted into them.
Collapse
Affiliation(s)
- Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, Sesto Fiorentino (Firenze) 50019, Italy.
| | - Rolando Guidelli
- Retired professor from Florence University, Firenze 50121, Italy.
| |
Collapse
|
11
|
Dzuba SA. Structural studies of biological membranes using ESEEM spectroscopy of spin labels and deuterium substitution. J STRUCT CHEM+ 2013. [DOI: 10.1134/s0022476613070019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Matalon E, Faingold O, Eisenstein M, Shai Y, Goldfarb D. The topology, in model membranes, of the core peptide derived from the T-cell receptor transmembrane domain. Chembiochem 2013; 14:1867-75. [PMID: 23881822 DOI: 10.1002/cbic.201300191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 01/16/2023]
Abstract
The T-cell receptor-CD3 complex (TCR-CD3) serves a critical role in protecting organisms from infectious agents. The TCR is a heterodimer composed of α- and β-chains, which are responsible for antigen recognition. Within the transmembrane domain of the α-subunit, a region has been identified to be crucial for the assembly and function of the TCR. This region, termed core peptide (CP), consists of nine amino acids (GLRILLLKV), two of which are charged (lysine and arginine) and are crucial for the interaction with CD3. Earlier studies have shown that a synthetic peptide corresponding to the CP sequence can suppress the immune response in animal models of T-cell-mediated inflammation, by disrupting proper assembly of the TCR. As a step towards the understanding of the source of the CP activity, we focused on CP in egg phosphatidylcholine/cholesterol (9:1, mol/mol) model membranes and determined its secondary structure, oligomerization state, and orientation with respect to the membrane. To achieve this goal, 15-residue segments of TCRα, containing the CP, were synthesized and spin-labeled at different locations with a nitroxide derivative. Electron spin-echo envelope modulation spectroscopy was used to probe the position and orientation of the peptides within the membrane, and double electron-electron resonance measurements were used to probe its conformation and oligomerization state. We found that the peptide is predominantly helical in a membrane environment and tends to form oligomers (mostly dimers) that are parallel to the membrane plane.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, 234 Hertzl St, Rehovot, 7632700 (Israel)
| | | | | | | | | |
Collapse
|
13
|
Dzuba SA, Raap J. Spin-Echo Electron Paramagnetic Resonance (EPR) Spectroscopy of a Pore-Forming (Lipo)Peptaibol in Model and Bacterial Membranes. Chem Biodivers 2013; 10:864-75. [DOI: 10.1002/cbdv.201200387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 11/08/2022]
|
14
|
Matalon E, Kaminker I, Zimmermann H, Eisenstein M, Shai Y, Goldfarb D. Topology of the trans-membrane peptide WALP23 in model membranes under negative mismatch conditions. J Phys Chem B 2013; 117:2280-93. [PMID: 23311473 DOI: 10.1021/jp310056h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organization and orientation of membrane-inserted helices is important for better understanding the mode of action of membrane-active peptides and of protein-membrane interactions. Here we report on the application of ESEEM (electron spin-echo envelope modulation) and DEER (double electron-electron resonance) techniques to probe the orientation and oligomeric state of an α-helical trans-membrane model peptide, WALP23, under conditions of negative mismatch between the hydrophobic cores of the model membrane and the peptide. Using ESEEM, we measured weak dipolar interactions between spin-labeled WALP23 and (2)H nuclei of either the solvent (D2O) or of lipids specifically deuterated at the choline group. The ESEEM data obtained from the deuterated lipids were fitted using a model that provided the spin label average distance from a layer of (2)H nuclei in the hydrophilic region of the membrane and the density of the (2)H nuclei in the layer. DEER was used to probe oligomerization through the dipolar interaction between two spin-labels on different peptides. We observed that the center of WALP23 does not coincide with the bilayer midplane and its N-terminus is more buried than the C-terminus. In addition, the ESEEM data fitting yielded a (2)H layer density that was much lower than expected. The DEER experiments revealed the presence of oligomers, the presence of which was attributable to the negative mismatch and the electrostatic dipole of the peptide. A discussion of a possible arrangement of the individual helices in the oligomers that is consistent with the ESEEM and DEER data is presented.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | |
Collapse
|
15
|
Lueders P, Jäger H, Hemminga MA, Jeschke G, Yulikov M. Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides. J Phys Chem B 2013; 117:2061-8. [DOI: 10.1021/jp311287t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Petra Lueders
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Heidrun Jäger
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Marcus A. Hemminga
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
16
|
Peggion C, Biondi B, De Zotti M, Oancea S, Formaggio F, Toniolo C. Spectroscopically labeled peptaibiotic analogs: the 4-nitrophenylalanine infrared absorption probe inserted at different positions into trichogin GA IV. J Pept Sci 2012; 19:246-56. [DOI: 10.1002/psc.2475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Barbara Biondi
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Simona Oancea
- Department of Biochemistry and Toxicology; University ‘Lucian Blaga’; 550012 Sibiu Romania
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; via Marzolo 1 35131 Padova Italy
| |
Collapse
|
17
|
Bobone S, Gerelli Y, De Zotti M, Bocchinfuso G, Farrotti A, Orioni B, Sebastiani F, Latter E, Penfold J, Senesi R, Formaggio F, Palleschi A, Toniolo C, Fragneto G, Stella L. Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1013-24. [PMID: 23220179 DOI: 10.1016/j.bbamem.2012.11.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV (GAIV) is an antimicrobial peptide of the peptaibol family, like the extensively studied alamethicin (Alm). GAIV acts by perturbing membrane permeability. Previous data have shown that pore formation is related to GAIV aggregation and insertion in the hydrophobic core of the membrane. This behavior is similar to that of Alm and in agreement with a barrel-stave mechanism, in which transmembrane oriented peptides aggregate to form a channel. However, while the 19-amino acid long Alm has a length comparable to the membrane thickness, GAIV comprises only 10 amino acids, and its helix is about half the normal bilayer thickness. Here, we report the results of neutron reflectivity measurements, showing that GAIV inserts in the hydrophobic region of the membrane, causing a significant thinning of the bilayer. Molecular dynamics simulations of GAIV/membrane systems were also performed. For these studies we developed a novel approach for constructing the initial configuration, by embedding the short peptide in the hydrophobic core of the bilayer. These calculations indicated that in the transmembrane orientation GAIV interacts strongly with the polar phospholipid headgroups, drawing them towards its N- and C-termini, inducing membrane thinning and becoming able to span the bilayer. Finally, vesicle leakage experiments demonstrated that GAIV activity is significantly higher with thinner membranes, becoming similar to that of Alm when the bilayer thickness is comparable to its size. Overall, these data indicate that a barrel-stave mechanism of pore formation might be possible for GAIV and for similarly short peptaibols despite their relatively small size.
Collapse
Affiliation(s)
- S Bobone
- Department of Chemical Sciences and Technologies, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Becucci L, Maran F, Guidelli R. Probing membrane permeabilization by the antibiotic lipopeptaibol trichogin GA IV in a tethered bilayer lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1656-62. [DOI: 10.1016/j.bbamem.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
19
|
Syryamina VN, De Zotti M, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA. A Molecular View on the Role of Cholesterol upon Membrane Insertion, Aggregation, and Water Accessibility of the Antibiotic Lipopeptide Trichogin GA IV As Revealed by EPR. J Phys Chem B 2012; 116:5653-60. [DOI: 10.1021/jp301660a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Victoria N. Syryamina
- Institute
of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Jan Raap
- Leiden Institute
of Chemistry,
Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute
of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
21
|
De Zotti M, Biondi B, Peggion C, Formaggio F, Park Y, Hahm KS, Toniolo C. Trichogin GA IV: a versatile template for the synthesis of novel peptaibiotics. Org Biomol Chem 2011; 10:1285-99. [PMID: 22179201 DOI: 10.1039/c1ob06178j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trichogin GA IV, isolated from the fungus Trichoderma longibrachiatum, is the prototype of lipopeptaibols, the sub-class of short-length peptaibiotics exhibiting membrane-modifying properties. This peptaibol is predominantly folded in a mixed 3(10)-/α- helical conformation with a clear, albeit modest, amphiphilic character, which is likely to be responsible for its capability to perturb bacterial membranes and to induce cell death. In previous papers, we reported on the interesting biological properties of trichogin GA IV, namely its good activity against Gram positive bacteria, in particular methicillin-resistant S. aureus strains, its stability towards proteolytic degradation, and its low hemolytic activity. Aiming at broadening the antimicrobial activity spectrum by increasing the peptide helical amphiphilicity, in this work we synthesized, by solution and solid-phase methodologies, purified and fully characterized a set of trichogin GA IV analogs in which the four Gly residues at positions 2, 5, 6, 9, lying in the poorly hydrophilic face of the helical structure, are substituted by one (position 2, 5, 6 or 9), two (positions 5 and 6), three (positions 2, 5, and 9), and four (positions 2, 5, 6, and 9) Lys residues. The conformational preferences of the Lys-containing analogs were assessed by FT-IR absorption, CD and 2D-NMR techniques in aqueous, organic, and membrane-mimetic environments. Interestingly, it turns out that the presence of charged residues induces a transition of the helical conformation adopted by the peptaibols (from 3(10)- to α-helix) as a function of pH in a reversible process. The role played in the analogs by the markedly increased amphiphilicity was further tested by fluorescence leakage experiments in model membranes, protease resistance, antibacterial and antifungal activities, cytotoxicity, and hemolysis. Taken together, our biological results provide evidence that some of the least substituted among these analogs are good candidates for the development of new membrane-active antimicrobial agents.
Collapse
Affiliation(s)
- Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|