1
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
2
|
Maurice R, Mallah T, Guihéry N. Magnetism in Binuclear Compounds: Theoretical Insights. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Janicka K, Wysocki AL, Park K. Computational Insights into Electronic Excitations, Spin-Orbit Coupling Effects, and Spin Decoherence in Cr(IV)-Based Molecular Qubits. J Phys Chem A 2022; 126:8007-8020. [PMID: 36269140 DOI: 10.1021/acs.jpca.2c06854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The great success of point defects and dopants in semiconductors for quantum information processing has invigorated a search for molecules with analogous properties. Flexibility and tunability of desired properties in a large chemical space have great advantages over solid-state systems. The properties analogous to point defects were demonstrated in the Cr(IV)-based molecular family, Cr(IV)(aryl)4, where the electronic spin states were optically initialized, read out, and controlled. Despite this kick-start, there is still a large room for enhancing properties crucial for molecular qubits. Here, we provide computational insights into key properties of the Cr(IV)-based molecules aimed at assisting the chemical design of efficient molecular qubits. Using the multireference ab initio methods, we investigate the electronic states of Cr(IV)(aryl)4 molecules with slightly different ligands, showing that the zero-phonon line energies agree with the experiment and that the excited spin-triplet and spin-singlet states are highly sensitive to small chemical perturbations. By adding spin-orbit interaction, we find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules and discuss optically induced spin initialization via non-radiative intersystem crossing. We quantify (super)hyperfine coupling to the 53Cr nuclear spin and to the 13C and 1H nuclear spins, and we discuss electron spin decoherence. We show that the splitting or broadening of the electronic spin sub-levels due to superhyperfine interaction with 1H nuclear spins decreases by an order of magnitude when the molecules have a substantial transverse ZFS parameter.
Collapse
Affiliation(s)
- Karolina Janicka
- Department of Physics, Virginia Tech, Blacksburg, Virginia24061, United States
| | | | - Kyungwha Park
- Department of Physics, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
4
|
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022; 6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.
Collapse
|
5
|
Sauza-de la Vega A, Pandharkar R, Stroscio GD, Sarkar A, Truhlar DG, Gagliardi L. Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits. JACS AU 2022; 2:2029-2037. [PMID: 36186551 PMCID: PMC9516709 DOI: 10.1021/jacsau.2c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 05/30/2023]
Abstract
Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet-triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn-Sham density functional theory for singlet-triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates.
Collapse
Affiliation(s)
- Arturo Sauza-de la Vega
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Riddhish Pandharkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Gautam D. Stroscio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455−0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Roles of the Flexible Primary Coordination Sphere of the Mn 4CaO x Cluster: What Are the Immediate Decay Products of the S3 State? J Phys Chem B 2022; 126:7212-7228. [DOI: 10.1021/acs.jpcb.2c02596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Mitsuo Shoji
- Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Bouammali MA, Suaud N, Guihéry N, Maurice R. Antisymmetric Exchange in a Real Copper Triangular Complex. Inorg Chem 2022; 61:12138-12148. [PMID: 35895313 DOI: 10.1021/acs.inorgchem.2c00939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antisymmetric exchange, also known as the Dzyaloshinskii-Moriya interaction (DMI), is an effective interaction that may be at play in isolated complexes (with transition metals or lanthanides, for instance), nanoparticles, and highly correlated materials with adequate symmetry properties. While many theoretical works have been devoted to the analysis of single-ion zero-field splitting and to a lesser extent to symmetric exchange, only a few ab initio studies deal with the DMI. Actually, it originates from a subtle interplay between weak electronic interactions and spin-orbit couplings. This article aims to highlight the origin of this interaction from theoretical grounds in a real tri-copper(II) complex, capitalizing on previous methodological studies on bi-copper(II) model complexes. By tackling this three-magnetic-center system, we will first show that the multispin model Hamiltonian is appropriate for trinuclear (and likely for higher nuclearity) complexes, then that the correct application of the permutation relationship is necessary to explain the outcomes of the ab initio calculations, and finally, that the model parameters extracted from a binuclear model transfer well to the trinuclear complex. For a more theory-oriented purpose, we will show that the use of a simplified structural model allows one to perform more demanding electronic structure calculations. On this simpler system, we will first check that the previous transferability is still valid, prior to performing more advanced calculations on the derived two-magnetic-center model system. To this end, we will explain in detail the physics of the DMI in the copper triangle of interest, before advocating further theory/experiment efforts.
Collapse
Affiliation(s)
- Mohammed-Amine Bouammali
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France.,Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, 35000 Rennes, France
| |
Collapse
|
8
|
Wu D, Zhou C, Bao JJ, Gagliardi L, Truhlar DG. Zero-Field Splitting Calculations by Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2199-2207. [PMID: 35319874 DOI: 10.1021/acs.jctc.1c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zero-field splitting (ZFS) is a fundamental molecular property that is especially relevant for single-molecule magnets (SMMs), electron paramagnetic resonance spectra, and quantum computing. Developing a method that can accurately predict ZFS parameters can be very powerful for designing new SMMs. One of the challenges is to include external correlation in an inherently multiconfigurational open-shell species for the accurate prediction of magnetic properties. Previously available methods depend on expensive multireference perturbation theory calculations to include external correlation. In this paper, we present spin-orbit-inclusive multiconfiguration and multistate pair-density functional theory (MC-PDFT) calculations of ZFSs; these calculations have a cost comparable to complete-active-space self-consistent field (CASSCF) theory, but they include correlation external to the active space. We found that combining a multistate formulation of MC-PDFT, namely, compressed-state multistate pair-density functional theory, with orbitals optimized by weighted-state-averaged CASSCF, yields reasonably accurate ZFS results.
Collapse
Affiliation(s)
- Dihua Wu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
9
|
Kühne IA, Ozarowski A, Sultan A, Esien K, Carter AB, Wix P, Casey A, Heerah-Booluck M, Keene TD, Müller-Bunz H, Felton S, Hill S, Morgan GG. Homochiral Mn 3+ Spin-Crossover Complexes: A Structural and Spectroscopic Study. Inorg Chem 2022; 61:3458-3471. [PMID: 35175771 PMCID: PMC8889584 DOI: 10.1021/acs.inorgchem.1c03379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Structural, magnetic,
and spectroscopic data on a Mn3+ spin-crossover complex
with Schiff base ligand 4-OMe-Sal2323, isolated in crystal
lattices with five different counteranions,
are reported. Complexes of [Mn(4-OMe-Sal2323)]X where X
= ClO4– (1), BF4– (2), NO3– (3), Br– (4), and I– (5) crystallize isotypically in the chiral
orthorhombic space group P21212 with a range of spin state preferences for the [Mn(4-OMe-Sal2323)]+ complex cation over the temperature range
5–300 K. Complexes 1 and 2 are high-spin,
complex 4 undergoes a gradual and complete thermal spin
crossover, while complexes 3 and 5 show
stepped crossovers with different ratios of spin triplet and quintet
forms in the intermediate temperature range. High-field electron paramagnetic
resonance was used to measure the zero-field splitting parameters
associated with the spin triplet and quintet states at temperatures
below 10 K for complexes 4 and 2 with respective
values: DS=1 = +23.38(1) cm–1, ES=1 = +2.79(1) cm–1,
and DS=2 =
+6.9(3) cm–1, with a distribution of E parameters for the S = 2 state. Solid-state circular
dichroism (CD) spectra on high-spin complex 1 at room
temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate,
and solution CD measurements on the same sample in methanol show that
it is stable toward racemization. Solid-state UV–vis absorption
spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different
intensities at higher energies, in line with the different electronic
composition. The statistical prevalence of homochiral crystallization
of [Mn(4-OMe-Sal2323)]+ in five lattices with
different achiral counterions suggests that the chirality may be directed
by the 4-OMe-Sal2323 ligand. Zero-field
splitting parameters of the spin triplet and
quintet forms of a spin-crossover Mn3+ complex stabilized
in lattices with different counterions are measured by high-field
electron paramagnetic resonance at different frequencies. The homochiral
crystallization of the enantiopure Δ or Λ forms of the
chelate complex, despite the use of achiral anions, is attributed
to the steric influence of the ligand substituent.
Collapse
Affiliation(s)
- Irina A Kühne
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Aizuddin Sultan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Kane Esien
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Anthony B Carter
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Paul Wix
- School of Chemistry & CRANN Institute & AMBER Centre, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Aoife Casey
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | - Tony D Keene
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Solveig Felton
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Stepanenko I, Mizetskyi P, Orlowska E, Bučinský L, Zalibera M, Vénosová B, Clémancey M, Blondin G, Rapta P, Novitchi G, Schrader W, Schaniel D, Chen YS, Lutz M, Kožíšek J, Telser J, Arion VB. The Ruthenium Nitrosyl Moiety in Clusters: Trinuclear Linear μ-Hydroxido Magnesium(II)-Diruthenium(II), μ 3-Oxido Trinuclear Diiron(III)-Ruthenium(II), and Tetranuclear μ 4-Oxido Trigallium(III)-Ruthenium(II) Complexes. Inorg Chem 2022; 61:950-967. [PMID: 34962391 PMCID: PMC8767547 DOI: 10.1021/acs.inorgchem.1c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/28/2022]
Abstract
The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear μ3-oxido clusters [Fe2RuCl4(μ3-O)(μ-OMe)(μ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear μ4-oxido complex [Ga3RuCl3(μ4-O)(μ-OMe)3(μ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(μ-OH)(μ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.
Collapse
Affiliation(s)
- Iryna Stepanenko
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Pavlo Mizetskyi
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Ewelina Orlowska
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Lukáš Bučinský
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Michal Zalibera
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Barbora Vénosová
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
- Department
of Physics, Faculty of Science, University
of Ostrava, 30. dubna
22, 70103 Ostrava, Czech Republic
| | - Martin Clémancey
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, LCBM, F-38000 Grenoble, France
| | - Geneviève Blondin
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, LCBM, F-38000 Grenoble, France
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | | | - Wolfgang Schrader
- MPI
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | - Yu-Sheng Chen
- NSF’s
ChemMATCARS, The University of Chicago, Lemont, Illinois 60439, United States
| | - Martin Lutz
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jozef Kožíšek
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United
States
| | - Vladimir B. Arion
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Alexandropoulos DI, Kong F, Lombardi F, Horton PN, Coles SJ, Bogani L. A manganese (II) dimer bearing the reduced derivatives of nitronyl nitroxides. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Sundaresan S, Kühne IA, Evesson C, Harris MM, Fitzpatrick AJ, Ahmed A, Müller-Bunz H, Morgan GG. Compressed Jahn-Teller octahedra and spin quintet-triplet switching in coordinatively elastic manganese(III) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
14
|
Janas Z, Jezierska J, Ozarowski A, Bieńko A, Lis T, Jezierski A, Krawczyk M. Investigation of vanadium(III) and vanadium(IV) compounds supported by the linear diaminebis(phenolate) ligands: correlation between structures and magnetic properties. Dalton Trans 2021; 50:5184-5196. [PMID: 33881036 DOI: 10.1039/d0dt04302h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A family of oxidovanadium(iv) compounds containing linear diaminebis(phenolate (salans) L1-5 ligands (L1 = [MeNCH2CH2NMe(CH2-4-CMe2CH2CMe3-C6H3O)2]2-; L2 = [MeNCH2CH2NMe(CH2-4-CH3-C6H3O)2]2-; L3 = [MeNCH2CH2NMe(CH2-4-Cl-C6H3O)2]2-; L4 = {MeNCH2CH2NMe[CH2-4,6-(CH3)2-C6H2O]2}2-; and L5 = {MeNCH2CH2NMe[CH2-4,6-(Br)2-C6H2O]2}2-) and non-oxidovanadium(iii) with L2,4 and acac ligands has been prepared and characterized by chemical and physical techniques. Reactions of [VO(acac)2] with ligand precursors H2L2,4 in toluene or hexane afforded vanadium(iii) compounds [V(L-κ4ONNO)(acac)] (1, L2; 2, L4), while the use of acetonitrile or ethanol led to the formation of dimeric oxidovanadium(iv) [(VO)2(μ-L-κ4ONNO)2] (3, L1; 4, L2; 5, L3) and monomeric [VO(L-κ4ONNO)] (6, L4, 7, L5) compounds. As shown by X-ray crystallography, compounds 1 and 2 are monomeric, in which the chelating ligands afford octahedral cis-α geometry at the vanadium center. In the dimeric structures of 3-5, the six-coordinate vanadium centers are bridged via two oxygen atoms of the L1-3 ligands while the L4,5 ligands generate square pyramidal structures of the monomeric 6 and 7 compounds. HFEPR studies allowed the determination of the spin Hamiltonian parameters of the S = 1 spin state of the monomeric V(iii) and dimeric V(iv), and S = ½ in monomeric V(iv) compounds. Magnetic measurements of 3-5 indicated weak ferromagnetic metal-metal exchange interactions. A reaction course for the deoxygenation and reduction of vanadyl-salan compounds is proposed.
Collapse
Affiliation(s)
- Zofia Janas
- Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Julia Jezierska
- Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Adam Jezierski
- Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Marta Krawczyk
- Faculty of Pharmacy, Wrocław Medical University, 211 Borowska, 50-556 Wrocław, Poland
| |
Collapse
|
15
|
Chang MW, Gan P, Peng YR, Wu CM, Huang YT, Lee GH, Chang CK, Sheu HS, Yang E. Computational approach for determining the zero-field splitting terms and magnetic coupling strength of in a trigonal Mn3III complex. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Reinholdt A, Pividori D, Laughlin AL, DiMucci IM, MacMillan SN, Jafari MG, Gau MR, Carroll PJ, Krzystek J, Ozarowski A, Telser J, Lancaster KM, Meyer K, Mindiola DJ. A Mononuclear and High-Spin Tetrahedral Ti II Complex. Inorg Chem 2020; 59:17834-17850. [PMID: 33258366 PMCID: PMC7928263 DOI: 10.1021/acs.inorgchem.0c02586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 12/31/2022]
Abstract
A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;μ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel Pividori
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander L. Laughlin
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ida M. DiMucci
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mehrafshan G. Jafari
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Kyle M. Lancaster
- Baker
Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karsten Meyer
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Daniel J. Mindiola
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Banerjee A, Banerjee S, Gómez García CJ, Benmansour S, Chattopadhyay S. Field-induced single molecule magnet behavior of a dinuclear cobalt(II) complex: a combined experimental and theoretical study. Dalton Trans 2020; 49:16778-16790. [PMID: 33174540 DOI: 10.1039/d0dt02158j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dinuclear cobalt(ii) complexes, [(dmso)CoIIL1(μ-(m-NO2)C6H4COO)CoII(NCS)] (1) and [(dmso)CoIIL2(μ-(m-NO2)C6H4COO)CoII(NCS)] (2) [dmso = dimethylsulfoxide, H2L1 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-methoxyphenol) and H2L2 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)] have been synthesized and structurally characterized by single-crystal X-ray diffraction, magnetic-susceptibility measurements and various spectroscopic techniques. Each complex contains a cobalt(ii) center with a slightly distorted octahedral geometry and a second cobalt(ii) center with a distorted trigonal prismatic one. To obtain insight into the physical nature of weak non-covalent interactions, we have extensively used the Bader's quantum theory of atoms-in-molecules (QTAIM). In addition, the non-covalent interaction reduced density gradient (NCI-RDG) methods established the presence of such non-covalent intermolecular interactions. Variable temperature magnetic susceptibility measurements show that both cobalt centers in each complex are in the high spin state (S = 3/2) and both complexes show weak ferromagnetic couplings through the double phenoxido bridges (J = 3.36(3) cm-1 in 1 and 4.56(2) cm-1 in 2). The magnetic properties of both complexes can be fitted to a Co(ii) dimer model including similar orbital reduction factors (α = -0.94(1) for 1 and -0.85(1) for 2) although different zero field splitting parameters D(1) = 11.0(4) cm-1 and D(2) = 19.5(4) cm-1 in 1 and D(1) = 8.2(4) cm-1 and D(2) = -1.3(4) cm-1 in 2. AC magnetic measurements reveal that the CoII2 unit in complex 2 exhibits field-induced slow relaxation of the magnetization at low temperatures and high frequencies.
Collapse
Affiliation(s)
- Abhisek Banerjee
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| | | | | | | | | |
Collapse
|
18
|
Premužić D, Hołyńska M, Ozarowski A, Pietzonka C, Roseborough A, Stoian SA. Model Dimeric Manganese(IV) Complexes Featuring Terminal Tris-hydroxotetraazaadamantane and Various Bridging Ligands. Inorg Chem 2020; 59:10768-10784. [PMID: 32687708 DOI: 10.1021/acs.inorgchem.0c01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of model dinuclear manganese(IV) complexes of the general formula [(H3COH)(L')MnIV(μ-L)2MnIV(L')(HOCH3)] is presented. These compounds feature capping 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands derived from a polydentate oxime compound (L'). The bridging ligands L include azide (1), methoxide (2), and oxalate (3) anions. The magnetic properties and high-field (HF) EPR spectra of 1-3 were studied in detail and revealed varying weak antiferromagnetic coupling and modest zero-field splitting (ZFS) of the local quartet spin sites. Our HF EPR studies provide insight into the dimer ZFS, including determination of the corresponding parameters by giant spin approach for methoxido-bridged complex 2. Furthermore, the physicochemical properties of 1-3 were studied using IR, UV-vis, and electrochemical (cyclic voltammetry) methods. Theoretical exchange coupling constants were obtained using broken-symmetry (BS) density functional theory (DFT). Computational estimates of the local quartet ground spins state ZFSs of 1-3 were obtained using coupled-perturbed (CP) DFT and complete active space self-consistent field (CASSCF) calculations with n-electron valence state perturbation theory (NEVPT2) corrections. We found that the CP DFT calculations which used the B3LYP functional and models derived experimental structures performed best in reproducing both the magnitude and the sign of the experimental D values. Moreover, our computational investigation of 1-3 suggests that we observe metals sites which have an increased +3 character and are supported by redox noninnocent 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands. The latter conclusion is further corroborated by the observation that the free ligand can be readily oxidized to yield a NO-based radical.
Collapse
Affiliation(s)
- Dejan Premužić
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Clemens Pietzonka
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Alexander Roseborough
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, United States
| |
Collapse
|
19
|
Manganese tetraphenylporphyrin bromide and iodide. Studies of structures and magnetic properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Zolnhofer EM, Wijeratne GB, Jackson TA, Fortier S, Heinemann FW, Meyer K, Krzystek J, Ozarowski A, Mindiola DJ, Telser J. Electronic Structure and Magnetic Properties of a Titanium(II) Coordination Complex. Inorg Chem 2020; 59:6187-6201. [PMID: 32279487 DOI: 10.1021/acs.inorgchem.0c00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable coordination complexes of TiII (3d2) are relatively uncommon, but are of interest as synthons for low oxidation state titanium complexes for application as potential catalysts and reagents for organic synthesis. Specifically, high-spin TiII ions supported by redox-inactive ligands are still quite rare due to the reducing power of this soft ion. Among such TiII complexes is trans-[TiCl2(tmeda)2], where tmeda = N,N,N',N'-tetramethylethane-1,2-diamine. This complex was first reported by Gambarotta and co-workers almost 30 years ago, but it was not spectroscopically characterized and theoretical investigation by quantum chemical theory (QCT) was not feasible at that time. As part of our interest in low oxidation state early transition metal complexes, we have revisited this complex and report a modified synthesis and a low temperature (100 K) crystal structure that differs slightly from that originally reported at ambient temperature. We have used magnetometry, high-frequency and -field EPR (HFEPR), and variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopies to characterize trans-[TiCl2(tmeda)2]. These techniques yield the following S = 1 spin Hamiltonian parameters for the complex: D = -5.23(1) cm-1, E = -0.88(1) cm-1, (E/D = 0.17), g = [1.86(1), 1.94(2), 1.77(1)]. This information, in combination with electronic transitions from MCD, was used as input for both classical ligand-field theory (LFT) and detailed QCT studies, the latter including both density functional theory (DFT) and ab initio methods. These computational methods are seldom applied to paramagnetic early transition metal complexes, particularly those with S > 1/2. Our studies provide a complete picture of the electronic structure of this complex that can be put into context with the few other high-spin and mononuclear TiII species characterized to date.
Collapse
Affiliation(s)
- Eva M Zolnhofer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Gayan B Wijeratne
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Skye Fortier
- Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
21
|
Salvitti G, Negri F, Pérez-Jiménez ÁJ, San-Fabián E, Casanova D, Sancho-García JC. Investigating the (Poly)Radicaloid Nature of Real-World Organic Compounds with DFT-Based Methods. J Phys Chem A 2020; 124:3590-3600. [DOI: 10.1021/acs.jpca.0c01239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanna Salvitti
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
- INSTM UdR Bologna, 40136 Bologna, Italy
| | | | - Emilio San-Fabián
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), E-20018 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | | |
Collapse
|
22
|
Malček M, Vénosová B, Puškárová I, Kožíšek J, Gall M, Bučinský L. Coordination bonding in dicopper and dichromium tetrakis(μ-acetato)-diaqua complexes: Nature, strength, length, and topology. J Comput Chem 2020; 41:698-714. [PMID: 31804728 DOI: 10.1002/jcc.26121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
Geometry optimization, energetics, electronic structure, and topology of electron density of dicopper (I) and dichromium (II) tetrakis(μ-acetato)-diaqua complexes are studied focusing on the metal-metal interactions. The performance of broken symmetry (BS) single-determinant ab initio (Hartree-Fock, Møller-Plesset perturbation theory to the second and third orders, coupled clusters singles and doubles) and density functional theory (BLYP, B3LYP, B3LYP-D3, B2PLYP, MPW2PLYP) methods is compared to multideterminant ab initio (CASSCF, NEVPT2) methods as well as to the multipole model of charge density from a single-crystal X-ray diffraction experiment (Herich et al., Acta Cryst. 2018, B74, 681-692). In vacuo DFT geometry optimizations (improper axial water ligand orientation) are compared against the periodic ones. The singlet state is found to be energetically preferred. J coupling of (I) becomes underestimated for all ab initio methods used, when compared to experiment. It is concluded that the strength of the direct M─M interactions correlates closely with the J coupling magnitude at a given level of theory. The double potential well character of (II) and of the dehydrated form of (II) are considered with respect to the Cr─Cr distance. The physical effective bond order of the metal-metal interaction is small (below 0.1 e) in (I) and moderate (0.4 e) in (II). The CASSCF results overestimate the electron density of the metal-metal bond critical point by 20% and 50% in (I) and (II), respectively, when compared to the multipole model. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michal Malček
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Barbora Vénosová
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Ingrid Puškárová
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Jozef Kožíšek
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Marián Gall
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Lukáš Bučinský
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| |
Collapse
|
23
|
Sen A, Vyas N, Pandey B, Jaccob M, Rajaraman G. Mechanistic Insights on the Formation of High‐Valent Mn
III/IV
=O Species Using Oxygen as Oxidant: A Theoretical Perspective. Isr J Chem 2020. [DOI: 10.1002/ijch.201900142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Asmita Sen
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Nidhi Vyas
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Bhawana Pandey
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Madhavan Jaccob
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- Department of chemistry Loyola College Chennai 600 034
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
24
|
Krzystek J, Schnegg A, Aliabadi A, Holldack K, Stoian SA, Ozarowski A, Hicks SD, Abu-Omar MM, Thomas KE, Ghosh A, Caulfield KP, Tonzetich ZJ, Telser J. Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d 4 Electron Count. Inorg Chem 2020; 59:1075-1090. [PMID: 31909979 DOI: 10.1021/acs.inorgchem.9b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.
Collapse
Affiliation(s)
- J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexander Schnegg
- EPR Research Group , Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim Ruhr , Germany.,Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Azar Aliabadi
- Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am Elektronenspeicherring BESSY II , Albert-Einstein-Straße 15 , D-12489 Berlin , Germany
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Scott D Hicks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mahdi M Abu-Omar
- Departments of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106-9510 , United States
| | - Kolle E Thomas
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Kenneth P Caulfield
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Zachary J Tonzetich
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| |
Collapse
|
25
|
Krzystek J, Kohl G, Hansen HB, Enders M, Telser J. Combining HFEPR and NMR Spectroscopies to Characterize Organochromium(III) Complexes with Large Zero-Field Splitting. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Gerald Kohl
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Helge-Boj Hansen
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, 430 S. Michigan Avenue, Chicago, Illinois 60605, United States
| |
Collapse
|
26
|
Bucinsky L, Breza M, Malček M, Powers DC, Hwang SJ, Krzystek J, Nocera DG, Telser J. High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral CrIV Siloxide Complex and Computational Studies of Related CrIVL4 Systems. Inorg Chem 2019; 58:4907-4920. [DOI: 10.1021/acs.inorgchem.8b03512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
27
|
Wilson RK, Dhers S, Sproules S, McInnes EJL, Brooker S. Three Manganese Complexes of Anionic N4-Donor Schiff-Base Macrocycles: Monomeric MnII and MnIII, and dimeric MnIV. Aust J Chem 2019. [DOI: 10.1071/ch19209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three manganese macrocyclic complexes of two anionic N4-donor [1+1] Schiff-base macrocycles that differ in ring size (14 versus 16 membered), HLEt and HLPr (obtained from condensation of diphenylamine-2,2′-dicarboxaldehyde and either diethylenetriamine or dipropylenetriamine), are reported. Specifically, a pair of monomeric complexes MnIILEt(NCS)(H2O) and [MnIIILPr(NCS)2]·0.5H2O, plus a dimeric complex [MnIV2LEt2(O)2](ClO4)2·3DMF have been synthesised and characterised. Single crystal structure determinations on [MnIIILPr(NCS)2]·0.5H2O and [MnIV2LEt2(O)2](ClO4)2·3DMF revealed octahedral manganese centres in both cases: N6-coordinated Jahn–Teller distorted MnIII in the former and a pair of N4O2-coordinated MnIV in the latter. UV-Vis, IR, and electron paramagnetic resonance spectroscopy as well as magnetic measurements are reported. These macrocyclic complexes feature a simple and original design, and could find future uses as models for manganese catalase or as building blocks for the assembly of larger supramolecular architectures.
Collapse
|
28
|
Shova S, Vlad A, Cazacu M, Krzystek J, Ozarowski A, Malček M, Bucinsky L, Rapta P, Cano J, Telser J, Arion VB. Dinuclear manganese(iii) complexes with bioinspired coordination and variable linkers showing weak exchange effects: a synthetic, structural, spectroscopic and computation study. Dalton Trans 2019; 48:5909-5922. [DOI: 10.1039/c8dt04596h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-resolution HFEPR indicates weak exchange interactions between MnIII ions in agreement with DFT calculations.
Collapse
Affiliation(s)
- Sergiu Shova
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Angelica Vlad
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Maria Cazacu
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Joan Cano
- Institut de Ciència Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Joshua Telser
- Department of Biological
- Physical and Health Sciences
- Roosevelt University
- Chicago
- USA
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry of the University of Vienna
- A1090 Vienna
- Austria
| |
Collapse
|
29
|
Mehlich C, van Wüllen C. Hyperfine tensors for a model system for the oxygen evolving complex of photosystem II: calculation of the anisotropy shift that occurs beyond the strong exchange limit. Phys Chem Chem Phys 2019; 21:22902-22909. [DOI: 10.1039/c9cp03629f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broken-symmetry density functional calculations have been used to calculate effective 55Mn hyperfine (A) tensors for a mixed-valence tetranuclear manganese complex, a model system for the S2 state of the oxygen-evolving complex of photosystem II.
Collapse
Affiliation(s)
- Christine Mehlich
- Fachbereich Chemie and Forschungszentrum OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| |
Collapse
|
30
|
Vignesh KR, Langley SK, Gartshore CJ, Borilović I, Forsyth CM, Rajaraman G, Murray KS. Rationalizing the sign and magnitude of the magnetic coupling and anisotropy in dinuclear manganese(iii) complexes. Dalton Trans 2018; 47:11820-11833. [PMID: 29951677 DOI: 10.1039/c8dt01410h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have synthesised twelve manganese(iii) dinuclear complexes, 1-12, in order to understand the origin of magnetic exchange (J) between the metal centres and the magnetic anisotropy (D) of each metal ion using a combined experimental and theoretical approach. All twelve complexes contain the same bridging ligand environment of one μ-oxo and two μ-carboxylato, that helped us to probe how the structural parameters, such as bond distance, bond angle and especially Jahn-Teller dihedral angle affect the magnetic behaviour. Among the twelve complexes, we found ferromagnetic coupling for five and antiferromagnetic coupling for seven. DFT computed the J and ab initio methods computed the D parameter, and are in general agreement with the experimentally determined values. The dihedral angle between the two Jahn-Teller axes of the constituent MnIII ions are found to play a key role in determining the sign of the magnetic coupling. Magneto-structural correlations are developed by varying the Mn-O distance and the Mn-O-Mn angle to understand how the magnetic coupling changes upon these structural changes. Among the developed correlations, the Mn-O distance is found to be the most sensitive parameter that switches the sign of the magnetic coupling from negative to positive. The single-ion zero-field splitting of the MnIII centres is found to be negative for complexes 1-11 and positive for complex 12. However, the zero-field splitting of the S = 4 state for the ferromagnetic coupled dimers is found to be positive, revealing a significant contribution from the exchange anisotropy - a parameter which has long been ignored as being too small to be effective.
Collapse
|
31
|
Chantzis A, Kowalska JK, Maganas D, DeBeer S, Neese F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the Efficient Calculation of X-ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J Chem Theory Comput 2018; 14:3686-3702. [DOI: 10.1021/acs.jctc.8b00249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Agisilaos Chantzis
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Wang L, Zlatar M, Vlahović F, Demeshko S, Philouze C, Molton F, Gennari M, Meyer F, Duboc C, Gruden M. Experimental and Theoretical Identification of the Origin of Magnetic Anisotropy in Intermediate Spin Iron(III) Complexes. Chemistry 2018; 24:5091-5094. [PMID: 29447424 PMCID: PMC5969241 DOI: 10.1002/chem.201705989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/24/2022]
Abstract
The complexes [FeLN2S2X] [in which LN2S2=2,2′‐(2,2′‐bipryridine‐6,6′‐diyl)bis(1,1′‐diphenylethanethiolate) and X=Cl, Br and I], characterized crystallographically earlier and here (Fe(L)Br), reveal a square pyramidal coordinated FeIII ion. Unusually, all three complexes have intermediate spin ground states. Susceptibility measurements, powder cw X‐ and Q‐band EPR spectra, and zero‐field powder Mössbauer spectra show that all complexes display distinct magnetic anisotropy, which has been rationalized by DFT calculations.
Collapse
Affiliation(s)
- Lianke Wang
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Matija Zlatar
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
| | - Filip Vlahović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany
| | | | - Florian Molton
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Marcello Gennari
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany
| | - Carole Duboc
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
33
|
Majumder M, Goswami T, Misra A. Multifunctional Magnetic Materials of Organic Origin for Biomedical Applications: A Theoretical Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201702530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manoj Majumder
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Tamal Goswami
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Anirban Misra
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| |
Collapse
|
34
|
Xu S, Bucinsky L, Breza M, Krzystek J, Chen CH, Pink M, Telser J, Smith JM. Ligand Substituent Effects in Manganese Pyridinophane Complexes: Implications for Oxygen-Evolving Catalysis. Inorg Chem 2017; 56:14315-14325. [DOI: 10.1021/acs.inorgchem.7b02421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Song Xu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical
Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical
Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joshua Telser
- Department of Biological, Chemical and
Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
35
|
Tadyszak K, Rudowicz C, Ohta H, Sakurai T. Electron magnetic resonance data on high-spin Mn(III; S = 2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach. J Inorg Biochem 2017; 175:36-46. [DOI: 10.1016/j.jinorgbio.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
36
|
Garcia-Cirera B, Gómez-Coca S, Font-Bardia M, Ruiz E, Corbella M. Influence of the Disposition of the Anisotropy Axes into the Magnetic Properties of Mn III Dinuclear Compounds with Benzoato Derivative Bridges. Inorg Chem 2017. [PMID: 28650620 DOI: 10.1021/acs.inorgchem.7b00877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two new MnIII dinuclear compounds [{Mn(H2O)(phen)}2(μ-4-CH3C6H4COO)2(μ-O)](ClO4)2·3CH3CN·H2O (1·3CH3CN·H2O) and [{Mn(H2O)(phen)}(μ-O)(μ-2-BrC6H4COO)2{Mn(NO3)(phen)}]NO3 (2) have been synthesized. Their structural data reveal significant differences in the shape of the coordination octahedron around the MnIII ions in both compounds. The different distortions from ideal geometry incite a very different magnetic behavior, affecting both the zero-field splitting parameters of the MnIII ions (DMn and EMn) and the magnetic interaction between them. Compound 1, with elongation in the monodentate ligand direction, shows antiferromagnetic coupling (ground state S = 0) and local DMn < 0, while compound 2, with compression in the oxo bridge direction, displays a ferromagnetic interaction (ground state S = 4) and local DMn > 0. Theoretical CASSCF and DFT calculations corroborate the different magnetic anisotropy and exchange coupling found in both compounds. Moreover, with the help of theoretical calculations, some interesting magneto-structural correlations have been found between the degree of distortion of the coordination octahedra and the magnetic coupling; it becomes more antiferromagnetic when the elongation parameter, Δ, in absolute value is increased.
Collapse
Affiliation(s)
- Beltzane Garcia-Cirera
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona , Barcelona 08007, Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona , Barcelona 08007, Spain.,Institut de Química Teórica i Computacional de la Universitat de Barcelona (IQTCUB) , Barcelona 08007, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB) and Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona , Barcelona 08007, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona , Barcelona 08007, Spain.,Institut de Química Teórica i Computacional de la Universitat de Barcelona (IQTCUB) , Barcelona 08007, Spain
| | - Montserrat Corbella
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona , Barcelona 08007, Spain.,Institut de Nanociencia i Nanotecnologia de la Universitat de Barcelona (IN2UB) , Barcelona 08007, Spain
| |
Collapse
|
37
|
Bucinsky L, Breza M, Lee WT, Hickey AK, Dickie DA, Nieto I, DeGayner JA, Harris TD, Meyer K, Krzystek J, Ozarowski A, Nehrkorn J, Schnegg A, Holldack K, Herber RH, Telser J, Smith JM. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorg Chem 2017; 56:4752-4769. [PMID: 28379707 DOI: 10.1021/acs.inorgchem.7b00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-oxidation-state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin-state preferences of threefold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(ImR)3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(ImR)3}Fe(NR')]+, R = Mes, R' = 1-adamantyl (3), tBu (4), were investigated by electronic absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMENAr)FeN]+ (TIMENAr = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), were investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (for 3 and 4) and frequency-domain Fourier-transform (FD-FT) terahertz electron paramagnetic resonance (for 3), which reveal their zero-field splitting parameters. Experimentally correlated theoretical studies comprising ligand-field theory and quantum chemical theory, the latter including both density functional theory and ab initio methods, reveal the key role played by the Fe 3dz2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin-state preference of the complex. The ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wei-Tsung Lee
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, The University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Ismael Nieto
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Jordan A DeGayner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - T David Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg , Egerlandstraße 1, D-91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Joscha Nehrkorn
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | - Rolfe H Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| |
Collapse
|
38
|
Shova S, Vlad A, Cazacu M, Krzystek J, Bucinsky L, Breza M, Darvasiová D, Rapta P, Cano J, Telser J, Arion VB. A five-coordinate manganese(iii) complex of a salen type ligand with a positive axial anisotropy parameter D. Dalton Trans 2017; 46:11817-11829. [DOI: 10.1039/c7dt01809f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations reproduced well the electronic absorption spectrum and spin Hamiltonian parameters for MnL(NCS).
Collapse
Affiliation(s)
- Sergiu Shova
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Angelica Vlad
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Maria Cazacu
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 81237 Bratislava
- Slovak Republic
| | - Joan Cano
- Institut de Ciència Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Joshua Telser
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago
- USA
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry of the University of Vienna
- A1090 Vienna
- Austria
| |
Collapse
|
39
|
Dolai M, Mondal A, Liu JL, Ali M. Three novel mononuclear Mn(iii)-based magnetic materials with square pyramidal versus octahedral geometries. NEW J CHEM 2017. [DOI: 10.1039/c7nj02919e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystal X-ray diffraction studies reveal that complexes 1 and 2 have square pyramidal geometry and 3 has octahedral geometry, which showed a dependence of negative anisotropy (D) values on the electronic, geometry and packing effects.
Collapse
Affiliation(s)
- Malay Dolai
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Abhishake Mondal
- Institut für Anorganische Chemie
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
- Centre de Recherche Paul Pascal (CRPP)
| | - Jun-Liang Liu
- Centre de Recherche Paul Pascal (CRPP)
- CNRS
- UPR 8641
- F-33600 Pessac
- France
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
40
|
Sugisaki K, Toyota K, Sato K, Shiomi D, Takui T. Behaviour of DFT-based approaches to the spin–orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo). Phys Chem Chem Phys 2017; 19:30128-30138. [DOI: 10.1039/c7cp05533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zero-field splitting tensors of MIII(acac)3 complexes are calculated using ab initio and DFT methods.
Collapse
Affiliation(s)
- Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Kazuo Toyota
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
- Research Support/URA Centre, University Administration Department, Osaka City University
- Sumiyoshi-ku
| |
Collapse
|
41
|
Escriche-Tur L, Albela B, Font-Bardia M, Corbella M. Singlet ground states in compounds with a [MnIII4O 2] 8+ core due to broken degeneration. NEW J CHEM 2017. [DOI: 10.1039/c6nj03845j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy distribution of spin states depending on the distinction between the magnetic interactions. Singlet ground states due to broken degeneration of ST ≠ 0 states. Attempt to assign spin states to a particular spin configuration.
Collapse
Affiliation(s)
- Luis Escriche-Tur
- Departament de Química Inorgànica i Orgànica (Secció inorgánica)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Laboratoire de Chimie
| | - Belén Albela
- Laboratoire de Chimie
- ENS de Lyon
- Université de Lyon
- 69364 Lyon Cedex 07
- France
| | - Mercè Font-Bardia
- Cristal·lografia
- Mineralogia i Dipòsits Minerals
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Montserrat Corbella
- Departament de Química Inorgànica i Orgànica (Secció inorgánica)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institud de Nanociència i Nanotecnologia de la Universitat de Barcelona (IN2UB)
| |
Collapse
|
42
|
Arauzo A, Bartolomé E, Benniston AC, Melnic S, Shova S, Luzón J, Alonso PJ, Barra AL, Bartolomé J. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity. Dalton Trans 2017; 46:720-732. [DOI: 10.1039/c6dt02509a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large single-ion transverse anisotropy at Mn(iii) sites induces slow magnetic relaxation at zero magnetic field of the ferromagnetic Mn dimers in a singular Mn2Ca2 complex.
Collapse
Affiliation(s)
- Ana Arauzo
- Servicio de Medidas Físicas
- Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Elena Bartolomé
- Escola Universitària Salesiana de Sarrià (EUSS)
- 08017 Barcelona
- Spain
| | - Andrew C. Benniston
- Molecular Photonics Laboratory
- School of Chemistry
- Newcastle University
- Newcastle-upon-Tyne
- UK
| | - Silvia Melnic
- Institute of Chemistry
- Academy of Sciences of Moldova
- Chisinau
- Moldova
| | - Sergiu Shova
- Institute of Macromolecular Chemistry “Petru Poni” Iasi
- 700487 Iasi
- Romania
| | - Javier Luzón
- Centro Universitario de la Defensa
- Academia General Militar
- Zaragoza
- Spain
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses
- CNRS and Université Grenoble Alpes
- 38042 Grenoble Cedex 9
- France
| | - Juan Bartolomé
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| |
Collapse
|
43
|
Ghassemi Tabrizi S, Arbuznikov AV, Kaupp M. Understanding Thermodynamic and Spectroscopic Properties of Tetragonal Mn12 Single-Molecule Magnets from Combined Density Functional Theory/Spin-Hamiltonian Calculations. J Phys Chem A 2016; 120:6864-79. [PMID: 27482933 DOI: 10.1021/acs.jpca.6b06896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
44
|
Escriche-Tur L, Font-Bardia M, Albela B, Corbella M. New insights into the comprehension of the magnetic properties of dinuclear Mn(III) compounds with the general formula [{MnL(NN)}2(μ-O)(μ-n-RC6H4COO)2]X2. Dalton Trans 2016; 45:11753-64. [PMID: 27295557 DOI: 10.1039/c6dt01097k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new dinuclear Mn(iii) compounds with benzoato derivative bridges [{Mn(bpy)L}2(μ-O)(μ-n-RC6H4COO)2]X2 (n-R = 3-MeO, 4-MeO and 4-tBu, X = NO3(-) and ClO4(-)) were synthesised and characterised. According to X-ray diffraction, the X anions tend to be coordinated to the Mn ions and may occupy the place of the monodentate ligand L. Two structural isomers that only differ in one of their monodentate ligands have been obtained with the 3-MeOC6H4COO(-) bridges. For all compounds, the Mn(iii) ions display elongated octahedra with a pronounced rhombic distortion. To quantify these distortions separately, the elongation and rhombicity parameters Δ and ρ have been defined. The magnetic study shows a good relationship between the distortion of the coordination polyhedra and the zero field splitting parameters (DMn and EMn). From the magnetic data of a powder sample, it is possible to determine the sign and magnitude of DMn for ferromagnetic systems or weak antiferromagnetic systems with DMn < 0. For this kind of dinuclear compound, the R group at the meta position, the rhombic distortion of the octahedra, and large torsion angles between the Jahn-Teller axes lead to ferromagnetic interactions.
Collapse
Affiliation(s)
- Luis Escriche-Tur
- Departament de Química Inorgànica i Orgànica (Secció inorgánica), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain. and Laboratoire de Chimie, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mercè Font-Bardia
- Cristallografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Montserrat Corbella
- Departament de Química Inorgànica i Orgànica (Secció inorgánica), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institud de Nanociència i Nanotecnologia de la Universitat de Barcelona (IN2UB), Av. Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|
45
|
Jovanović V, Lyskov I, Kleinschmidt M, Marian CM. On the performance of DFT/MRCI-R and MR-MP2 in spin–orbit coupling calculations on diatomics and polyatomic organic molecules. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1201600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vladimir Jovanović
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Igor Lyskov
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
46
|
Colmer HE, Margarit CG, Smith JM, Jackson TA, Telser J. Spectroscopic and Computational Investigation of Low-Spin Mn(III) Bis(scorpionate) Complexes. Eur J Inorg Chem 2016; 2016:2413-2423. [PMID: 28713219 PMCID: PMC5507630 DOI: 10.1002/ejic.201501250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/06/2022]
Abstract
Six-coordinate MnIII complexes are typically high-spin (S = 2), however, the scorpionate ligand, both in its traditional, hydridotris(pyrazolyl)borate form, Tp- and Tp*- (the latter with 3,5-dimethylpyrazole substituents) and in an aryltris(carbene)borate (i.e., N-heterocyclic carbene, NHC) form, [Ph(MeIm)3B]-, (MeIm = 3-methylimidazole) lead to formation of bis(scorpionate) complexes of MnIII with spin triplet ground states; three of which were investigated herein: [Tp2Mn]SbF6 (1SBF6), [Tp*2Mn]SbF6 (2SBF6), and [{Ph(MeIm)3B}2Mn]CF3SO3 (3CF3SO3). These trigonally symmetric complexes were studied experimentally by magnetic circular dichroism (MCD) spectroscopy (the propensity of 3 to oxidize to MnIV precluded collection of useful MCD data) including variable temperatures and fields (VTVH-MCD) and computationally by ab initio CASSCF/NEVPT2 methods. These combined experimental and theoretical techniques establish the 3A2g electronic ground state for the three complexes, and provide information on the energy of the "conventional" high-spin excited state (5Eg) and other, triplet excited states. These results show the electronic effect of pyrazole ring substituents in comparing 1 and 2. The tunability of the scorpionate ligand, even by perhaps the simplest change (from pyrazole in 1 to 3,5-dimethylpyrazole in 2) is quantitatively manifested through perturbations in ligand-field excited-state energies that impact ground-state zero-field splittings. The comparison with the NHC donor is much more dramatic. In 3, the stronger σ-donor properties of the NHC lead to a quantitatively different electronic structure, so that the lowest lying spin triplet excited state, 3Eg, is much closer in energy to the ground state than in 1 or 2. The zero-field splitting (zfs) parameters of the three complexes were calculated and in the case of 1 and 2 compare closely to experiment (lower by < 10%, < 2 cm-1 in absolute terms); for 3 the large magnitude zfs is reproduced, although there is ambiguity about its sign. The comprehensive picture obtained for these bis(scorpionate) MnIII complexes provides quantitative insight into the role played by the scorpionate ligand in stabilizing unusual electronic structures.
Collapse
Affiliation(s)
- Hannah E Colmer
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 USA
| | - Charles G Margarit
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003 USA
| | - Jeremy M Smith
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003 USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405 USA
| | - Timothy A Jackson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605 USA
| |
Collapse
|
47
|
Tabrizi SG, Arbuznikov AV, Kaupp M. Construction of Giant-Spin Hamiltonians from Many-Spin Hamiltonians by Third-Order Perturbation Theory and Application to an Fe3 Cr Single-Molecule Magnet. Chemistry 2016; 22:6853-62. [PMID: 27062248 DOI: 10.1002/chem.201504896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/10/2022]
Abstract
A general giant-spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange-coupled metal cluster with dominant Heisenberg interactions was derived from a many-spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second-order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high-field EPR spectra of a number of single-molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high-rank axial and transverse terms to be necessary to account for experimental data in terms of giant-spin models. While mixing of spin multiplets by local zero-field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third-order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an S=6 trigonal Fe3 Cr complex that was recently investigated by high-field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic-field space. The results question the ability of present high-field EPR techniques to determine high-rank zero-field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3 Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs.
Collapse
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | - Alexei V Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
48
|
Bucinsky L, Rohde GT, Que L, Ozarowski A, Krzystek J, Breza M, Telser J. HFEPR and Computational Studies on the Electronic Structure of a High-Spin Oxidoiron(IV) Complex in Solution. Inorg Chem 2016; 55:3933-45. [PMID: 27031000 DOI: 10.1021/acs.inorgchem.6b00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes perform diverse and important functions in biochemistry. The active form of these enzymes comprises the ferryl, oxidoiron(IV), [FeO](2+) unit. In enzymes, this unit is in the high-spin, quintet, S = 2, ground state, while many synthetic model compounds exist in the spin triplet, S = 1, ground state. Recently, however, Que and co-workers reported an oxidoiron(IV) complex with a quintet ground state, [FeO(TMG3tren)](OTf)2, where TMG3tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine and OTf = CF3SO3(-). The trigonal geometry imposed by this ligand, as opposed to the tetragonal geometry of earlier model complexes, favors the high-spin ground state. Although [FeO(TMG3tren)](2+) has been earlier probed by magnetic circular dichroism (MCD) and Mössbauer spectroscopies, the technique of high-frequency and -field electron paramagnetic resonance (HFEPR) is superior for describing the electronic structure of the iron(IV) center because of its ability to establish directly the spin-Hamiltonian parameters of high-spin metal centers with high precision. Herein we describe HFEPR studies on [FeO(TMG3tren)](OTf)2 generated in situ and confirm the S = 2 ground state with the following parameters: D = +4.940(5) cm(-1), E = 0.000(5), B4(0) = -14(1) × 10(-4) cm(-1), g⊥ = 2.006(2), and g∥ = 2.03(2). Extraction of a fourth-order spin-Hamiltonian parameter is unusual for HFEPR and impossible by other techniques. These experimental results are combined with state-of-the-art computational studies along with previous structural and spectroscopic results to provide a complete picture of the electronic structure of this biomimetic complex. Specifically, the calculations reproduce well the spin-Hamiltonian parameters of the complex, provide a satisfying geometrical picture of the S = 2 oxidoiron(IV) moiety, and demonstrate that the TMG3tren is an "innocent" ligand.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Gregory T Rohde
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| |
Collapse
|
49
|
Leto DF, Massie AA, Colmer HE, Jackson TA. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting. Inorg Chem 2016; 55:3272-82. [PMID: 27002928 DOI: 10.1021/acs.inorgchem.5b02309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in reproducing experimental E/D values. Overall, this work adds to the limited investigations of Mn(IV) ground-state properties and provides an initial assessment for calculating Mn(IV) ZFS parameters with quantum chemical methods.
Collapse
Affiliation(s)
- Domenick F Leto
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
50
|
Zhu W, Wilcoxen J, Britt RD, Richards NGJ. Formation of Hexacoordinate Mn(III) in Bacillus subtilis Oxalate Decarboxylase Requires Catalytic Turnover. Biochemistry 2016; 55:429-34. [PMID: 26744902 DOI: 10.1021/acs.biochem.5b01340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the disproportionation of oxalic acid monoanion into CO2 and formate. The enzyme has long been hypothesized to utilize dioxygen to form mononuclear Mn(III) or Mn(IV) in the catalytic site during turnover. Recombinant OxDC, however, contains only tightly bound Mn(II), and direct spectroscopic detection of the metal in higher oxidation states under optimal catalytic conditions (pH 4.2) has not yet been reported. Using parallel mode electron paramagnetic resonance spectroscopy, we now show that substantial amounts of Mn(III) are indeed formed in OxDC, but only in the presence of oxalate and dioxygen under acidic conditions. These observations provide the first direct support for proposals in which Mn(III) removes an electron from the substrate to yield a radical intermediate in which the barrier to C-C bond cleavage is significantly decreased. Thus, OxDC joins a small list of enzymes capable of stabilizing and controlling the reactivity of the powerful oxidizing species Mn(III).
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|