1
|
Xiao BL, Ning YN, Niu NN, Li D, Moosavi-Movahedi AA, Sheibani N, Hong J. Steered molecular dynamic simulations of conformational lock of Cu, Zn-superoxide dismutase. Sci Rep 2019; 9:4353. [PMID: 30867507 PMCID: PMC6416402 DOI: 10.1038/s41598-019-40892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
The conformational lock was a bio-thermodynamic theory to explain the characteristics of interfaces in oligomeric enzymes and their effects on catalytic activity. The previous studies on superoxide dismutases (Cu, Zn-SODs) showed that the dimeric structure contributed to the high catalytic efficiency and the stability. In this study, steered molecular dynamics simulations were used firstly to study the main interactions between two subunits of Cu, Zn-SODs. The decomposition process study showed that there were not only four pairs of hydrogen bonds but also twenty-five residue pairs participating hydrophobic interactions between A and B chains of SOD, and van der Waals interactions occupied a dominant position among these residue pairs. Moreover, the residue pairs of hydrogen bonds played a major role in maintaining the protein conformation. The analysis of the energy and conformational changes in the SMD simulation showed that there were two groups (two conformational locks) between A and B chains of SOD. The first group consisted of one hydrogen-bond residues pair and seven hydrophobic interactions residues pairs with a total average energy of −30.10 KJ/mol, and the second group of three hydrogen-bond residues pair and eighteen hydrophobic interactions residues pairs formed with a total average energy of −115.23 KJ/mol.
Collapse
Affiliation(s)
- Bao-Lin Xiao
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Yan-Na Ning
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Nan-Nan Niu
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Di Li
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Jun Hong
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China. .,Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University JinMing Road, Kaifeng, 475000, China.
| |
Collapse
|
2
|
Bizzarri AR, Baldacchini C, Cannistraro S. Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9190-9200. [PMID: 28789529 DOI: 10.1021/acs.langmuir.7b01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blue copper redox protein azurin (AZ) constitutes an ideal active element for building bionano-optoelectronic devices based on the intriguing interplay among its electron transfer (ET), vibrational, and optical properties. A full comprehension of its dynamical and functional behavior is required for efficient applications. Here, AZ bound to gold electrode via its disulfide bridge was investigated by a molecular dynamics simulation approach taking into account for gold electron polarization which provides a more realistic description of the protein-gold interaction. Upon binding to gold, AZ undergoes slight changes in its secondary structure with the preservation of the copper-containing active site structure. Binding of AZ to gold promotes new collective motions, with respect to free AZ, as evidenced by essential dynamics. Analysis of the ET from the AZ copper ion to the gold substrate, performed by the Pathways model, put into evidence the main residues and structural motifs of AZ involved in the ET paths. During the dynamical evolution of the bionanosystem, transient contacts between some lateral protein atoms and the gold substrate occurred; concomitantly, the opening of additional ET channels with much higher rates was registered. These results provide new and detailed insights on the dynamics and ET properties of the AZ-gold system, by also helping to rationalize some imaging and conductive experimental evidences and also to design new bionanodevices with tailored features.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| | - Chiara Baldacchini
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
- IBAF-CNR , Porano 05010, Italy
| | - Salvatore Cannistraro
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| |
Collapse
|
3
|
Baldacchini C, Bizzarri AR, Cannistraro S. Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Santini S, Bizzarri AR, Yamada T, Beattie CW, Cannistraro S. Binding of azurin to cytochromec551 as investigated by surface plasmon resonance and fluorescence. J Mol Recognit 2014; 27:124-30. [DOI: 10.1002/jmr.2346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Simona Santini
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology; University of Illinois; Chicago IL USA
| | - Craig W. Beattie
- Department of Surgery, Division of Surgical Oncology; University of Illinois; Chicago IL USA
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| |
Collapse
|
5
|
Valente M, Sousa SF, Magalhães AL, Freire C. Transfer of the K+ cation across a water/dichloromethane interface: a steered molecular dynamics study with implications in cation extraction. J Phys Chem B 2012; 116:1843-9. [PMID: 22260719 DOI: 10.1021/jp210786j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report the characterization of the dichloromethane (DCM)/water interface in terms of density profile, width, and surface structure. The use of steered molecular dynamics (SMD) to study the transfer of the K(+) cation from the organic layer to the water layer is also described. The corresponding free energy is in semiquantitative agreement with published experimental and theoretical results. The transference of the K(+) cation from the water layer toward the DCM layer occurs with concomitant water transport as a water microdroplet that detaches itself from the water layer after ca. 16 Å of penetration into the organic layer by breaking the thin water thread that unites both. Complexation of the water microdroplet by a polyethylene-glycol type podand induces the loss of water molecules from the water microdroplet to bulk DCM and, eventually, to the water layer.
Collapse
Affiliation(s)
- Mário Valente
- REQUIMTE-Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | | | | | | |
Collapse
|
6
|
Sato Y, Kameya M, Arai H, Ishii M, Igarashi Y. Detecting weak protein–protein interactions by modified far-western blotting. J Biosci Bioeng 2011; 112:304-7. [DOI: 10.1016/j.jbiosc.2011.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 11/16/2022]
|