1
|
Duan S, Uragami C, Horiuchi K, Hino K, Wang XF, Sasaki SI, Tamiaki H, Hashimoto H. Hydroquinone redox mediator enhances the photovoltaic performances of chlorophyll-based bio-inspired solar cells. Commun Chem 2021; 4:118. [PMID: 36697644 PMCID: PMC9814249 DOI: 10.1038/s42004-021-00556-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
Chlorophyll (Chl) derivatives have recently been proposed as photoactive materials in next-generation bio-inspired solar cells, because of their natural abundance, environmental friendliness, excellent photoelectric performance, and biodegradability. However, the intrinsic excitation dynamics of Chl derivatives remain unclear. Here, we show sub-nanosecond pump-probe time-resolved absorption spectroscopy of Chl derivatives both in solution and solid film states. We observe the formation of triplet-excited states of Chl derivatives both in deoxygenated solutions and in film samples by adding all-trans-β-carotene as a triplet scavenger. In addition, radical species of the Chl derivatives in solution were identified by adding hydroquinone as a cation radical scavenger and/or anion radical donor. These radical species (either cations or anions) can become carriers in Chl-derivative-based solar cells. Remarkably, the introduction of hydroquinone to the film samples enhanced the carrier lifetimes and the power conversion efficiency of Chl-based solar cells by 20% (from pristine 1.29% to 1.55%). This enhancement is due to a charge recombination process of Chl-A+/Chl-D-, which is based on the natural Z-scheme process of photosynthesis.
Collapse
Affiliation(s)
- Shengnan Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, P. R. China
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuen University, Sanda, Hyogo, Japan
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing, P. R. China
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuen University, Sanda, Hyogo, Japan
| | - Kota Horiuchi
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuen University, Sanda, Hyogo, Japan
| | - Kazuki Hino
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuen University, Sanda, Hyogo, Japan
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, P. R. China.
| | - Shin-Ichi Sasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Graduate School of Science and Technology, Kwansei Gakuen University, Sanda, Hyogo, Japan.
| |
Collapse
|
2
|
Staleva-Musto H, West R, Trathnigg M, Bína D, Litvín R, Polívka T. Carotenoid–chlorophyll energy transfer in the fucoxanthin–chlorophyll complex binding a fucoxanthin acyloxy derivative. Faraday Discuss 2019; 216:460-475. [DOI: 10.1039/c8fd00193f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A fucoxanthin derivative has negligible charge-transfer character of the S1/ICT state resulting in slowing down of the carotenoid–chlorophyll energy transfer.
Collapse
Affiliation(s)
| | - Robert West
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - Marco Trathnigg
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - David Bína
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Radek Litvín
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Tomáš Polívka
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| |
Collapse
|
3
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Staleva-Musto H, Kuznetsova V, West RG, Keşan G, Minofar B, Fuciman M, Bína D, Litvín R, Polívka T. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin. J Phys Chem B 2018; 122:2922-2930. [PMID: 29469573 DOI: 10.1021/acs.jpcb.8b00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We used ultrafast transient absorption spectroscopy to study excited-state dynamics of the keto-carotenoid fucoxanthin (Fx) and its two derivatives: 19'-butanoyloxyfucoxanthin (bFx) and 19'-hexanoyloxyfucoxanthin (hFx). These derivatives occur in some light-harvesting systems of photosynthetic microorganisms, and their presence is typically related to stress conditions. Even though the hexanoyl (butanoyl) moiety is not a part of the conjugated system of hFx (bFx), their absorption spectra in polar solvents exhibit more pronounced vibrational bands of the S2 state than for Fx. The effect of the nonconjugated acyloxy moiety is further observed in transient absorption spectra, which for Fx exhibit characteristic features of an intramolecular charge transfer (ICT) state in all polar solvents. For bFx and hFx, however, much weaker ICT features are detected in methanol, and the spectral markers of the ICT state disappear completely in polar, but aprotic acetonitrile. The presence of the acyloxy moiety also alters the lifetimes of the S1/ICT state. For Fx, the lifetimes are 60, 30, and 20 ps in n-hexane, acetonitrile, and methanol, whereas for bFx and hFx, these lifetimes yield 60, 60, and 40 ps, respectively. Testing the S1/ICT state lifetimes of hFx in other solvents revealed that some ICT features can be induced only in polar, protic solvents (methanol, ethanol, and ethylene glycol). Thus, bFx and hFx represent a rather rare example of a system in which a nonconjugated functional group significantly alters excited-state dynamics. By comparison with other carotenoids, we show that a keto group at the acyloxy tail, even though it is not in conjugation, affects the electron distribution along the conjugated backbone, resulting in the observed decrease of the ICT character of the S1/ICT state of bFx and hFx.
Collapse
Affiliation(s)
- Hristina Staleva-Musto
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Robert G West
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Gürkan Keşan
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Department of Chemistry, Faculty of Science , Gebze Technical University , 41400 Gebze , Kocaeli , Turkey
| | - Babak Minofar
- Center for Nanobiology and Structural Biology, Institute of Microbiology , Czech Academy of Sciences , CZ 373 33 Nové Hrady , Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - David Bína
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| | - Radek Litvín
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| |
Collapse
|
5
|
Kinashi N, Katsumura S, Shinada T, Sakaguchi K. Stereocontrolled Synthesis of 19'-Deoxyperidinin. Org Lett 2018; 20:582-585. [PMID: 29368931 DOI: 10.1021/acs.orglett.7b03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereocontrolled convergent synthesis of 19'-deoxyperidinin, 2, which might be a useful peridinin analog to understand the ICT characteristics, was efficiently achieved by sequential Pd-catalyzed cross-coupling reactions using bidirectionally extensible conjugated C5 olefin segments. The crucial 5(2H)-ylidenedihydrofuran function of 2 was successfully constructed by the Au-catalyzed regio- and stereoselective 5-exo-dig etherification.
Collapse
Affiliation(s)
- Naoto Kinashi
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazuhiko Sakaguchi
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
6
|
Scholz M, Flender O, Lenzer T, Oum K. Ultrafast Excited-State Dynamics of all-trans-Capsanthin in Organic Solvents. J Phys Chem A 2017; 121:8380-8388. [DOI: 10.1021/acs.jpca.7b08252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirko Scholz
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Oliver Flender
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Thomas Lenzer
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Kawon Oum
- Physikalische Chemie, Universität Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
7
|
Kosumi D, Kajikawa T, Sakaguchi K, Katsumura S, Hashimoto H. Excited state properties of β-carotene analogs incorporating a lactone ring. Phys Chem Chem Phys 2017; 19:3000-3009. [PMID: 28079227 DOI: 10.1039/c6cp06828f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids possessing a carbonyl group along their polyene backbone exhibit unique excited state properties due to the occurrence of intramolecular charge transfer (ICT) in the excited state. In fact, the ICT characteristics of naturally occurring carbonyl carotenoids play an essential role in the highly efficient energy transfer that proceeds in aquatic photosynthetic antenna systems. In the present study, we synthesized two short-chain polyene carotenoids incorporating a lactone ring, denoted as BL-7 and BL-8, having seven and eight conjugated double bonds (n = 7 and 8), respectively. The excited state properties of these compounds were directly compared to those of their non-carbonyl counterparts to clarify the role of the carbonyl group in the generation of ICT. The energies of the optically allowed S2 states for BL-7 and BL-8 were found to be more than 0.3 eV (2400 cm-1) below those of non-carbonyl short β-carotene homologs. Ultrafast spectroscopic data demonstrated various solvent polarity-induced effects, including the appearance of stimulated emission in the near-IR region in the case of BL-7, and significant lifetime shortening of the lowest-lying singlet S1 excited states of both BL-7 and BL-8. These results suggest that these compounds exhibit ICT characteristics.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Takayuki Kajikawa
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Sakaguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan and Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University, Japan.
| |
Collapse
|
8
|
Jia Y, Shi Y, Wang P, Zhang JP. Triplet excitation dynamics of β -carotene studied in three solvents by ns flash photolysis spectroscopy. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Greco JA, LaFountain AM, Kinashi N, Shinada T, Sakaguchi K, Katsumura S, Magdaong NCM, Niedzwiedzki DM, Birge RR, Frank HA. Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. J Phys Chem B 2016; 120:2731-44. [DOI: 10.1021/acs.jpcb.6b00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jordan A. Greco
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Naoto Kinashi
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazuhiko Sakaguchi
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Nikki Cecil M. Magdaong
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130, United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130, United States
| | - Robert R. Birge
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
10
|
Li L, Hu F, Chang YQ, Zhou Y, Wang P, Zhang JP. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
de Oliveira VE, Neves Miranda MAC, Soares MCS, Edwards HGM, de Oliveira LFC. Study of carotenoids in cyanobacteria by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:373-380. [PMID: 26057091 DOI: 10.1016/j.saa.2015.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority.
Collapse
Affiliation(s)
- Vanessa End de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Campus de Rio das Ostras, RJ 28890-000, Brazil.
| | | | - Maria Carolina Silva Soares
- Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Howell G M Edwards
- School of Life Sciences, University of Bradford, Bradford BD7 1DP, West Yorkshire, England, United Kingdom
| | - Luiz Fernando Cappa de Oliveira
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
12
|
Carbonera D, Di Valentin M, Spezia R, Mezzetti A. The unique photophysical properties of the Peridinin-Chlorophyll-α-Protein. Curr Protein Pept Sci 2015; 15:332-50. [PMID: 24678668 PMCID: PMC4030626 DOI: 10.2174/1389203715666140327111139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/22/2022]
Abstract
Peridinin-Chlorophyll-a-Proteins (PCPs) are water-soluble light harvesting complexes from dinoflagellates.
They have unique light-harvesting and energy transfer properties which have been studied in details in the last 15 years.
This review aims to give an overview on all the main aspects of PCPs photophysics, with an emphasis on some aspects
which have not been reviewed in details so far, such as vibrational spectroscopy studies, theoretical calculations, and
magnetic resonance studies. A paragraph on the present development of PCPs towards technological applications is also
included.
Collapse
Affiliation(s)
| | | | | | - Alberto Mezzetti
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
13
|
Kosumi D, Kajikawa T, Yano K, Okumura S, Sugisaki M, Sakaguchi K, Katsumura S, Hashimoto H. Roles of allene-group in an intramolecular charge transfer character of a short fucoxanthin homolog as revealed by femtosecond pump-probe spectroscopy. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pavlovich VS. Gas-phase energy of the S2←S0 transition and electrostatic properties of the S2 state of carotenoid peridinin via a solvatochromic shift and orientation broadening of the absorption spectrum. Photochem Photobiol Sci 2014; 13:1444-55. [DOI: 10.1039/c4pp00124a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvent effect on the position and the shape of the absorption spectrum of peridinin for 12 protic and aprotic solvents as well as the temperature effect for methanol were studied using a solvatochromic theory based on the Onsager sphere cavity model.
Collapse
Affiliation(s)
- Vladimir S. Pavlovich
- Division of Higher Mathematics and Physics
- Military Academy of Belarus
- Minsk 220057, Belarus
| |
Collapse
|
15
|
Di Valentin M, Salvadori E, Barone V, Carbonera D. Unravelling electronic and structural requisites of triplet–triplet energy transfer by advanced electron paramagnetic resonance and density functional theory. Mol Phys 2013. [DOI: 10.1080/00268976.2013.807368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Niedzwiedzki DM, Kajikawa T, Aoki K, Katsumura S, Frank HA. Excited States Energies and Dynamics of Peridinin Analogues and the Nature of the Intramolecular Charge Transfer State in Carbonyl-Containing Carotenoids. J Phys Chem B 2013; 117:6874-87. [DOI: 10.1021/jp400038k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research
Center, Washington University in St Louis, Saint Louis, Missouri 63130, United States
| | - Takayuki Kajikawa
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Kazuyoshi Aoki
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Shigeo Katsumura
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville
Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
17
|
Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE. Low-Temperature Spectroscopic Properties of the Peridinin–Chlorophyll a–Protein (PCP) Complex from the Coral Symbiotic Dinoflagellate Symbiodinium. J Phys Chem B 2013; 117:11091-9. [DOI: 10.1021/jp401022u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research
Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, Missouri
63130, United States
| | - Jing Jiang
- Photosynthetic Antenna Research
Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Cynthia S. Lo
- Photosynthetic Antenna Research
Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Photosynthetic Antenna Research
Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, Missouri
63130, United States
| |
Collapse
|
18
|
Enriquez MM, Hananoki S, Hasegawa S, Kajikawa T, Katsumura S, Wagner NL, Birge RR, Frank HA. Effect of Molecular Symmetry on the Spectra and Dynamics of the Intramolecular Charge Transfer (ICT) state of peridinin. J Phys Chem B 2012; 116:10748-56. [PMID: 22889055 DOI: 10.1021/jp305804q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The spectroscopic properties and dynamics of the excited states of two different synthetic analogues of peridinin were investigated as a function of solvent polarity using steady-state absorption, fluorescence, and ultrafast time-resolved optical spectroscopy. The analogues are denoted S-1- and S-2-peridinin and differ from naturally occurring peridinin in the location of the lactone ring and its associated carbonyl group, known to be obligatory for the observation of a solvent dependence of the lifetime of the S(1) state of carotenoids. Relative to peridinin, S-1- and S-2-peridinin have their lactone rings two and four carbons more toward the center of the π-electron system of conjugated carbon-carbon double bonds, respectively. The present experimental results show that as the polarity of the solvent increases, the steady-state spectra of the molecules broaden, and the lowest excited state lifetime of S-1-peridinin changes from ∼155 to ∼17 ps which is similar to the magnitude of the effect reported for peridinin. The solvent-induced change in the lowest excited state lifetime of S-2-peridinin is much smaller and changes only from ∼90 to ∼67 ps as the solvent polarity is increased. These results are interpreted in terms of an intramolecular charge transfer (ICT) state that is formed readily in peridinin and S-1-peridinin, but not in S-2-peridinin. Quantum mechanical computations reveal the critical factors required for the formation of the ICT state and the associated solvent-modulated effects on the spectra and dynamics of these molecules and other carbonyl-containing carotenoids and polyenes. The factors are the magnitude and orientation of the ground- and excited-state dipole moments which must be suitable to generate sufficient mixing of the lowest two excited singlet states.
Collapse
Affiliation(s)
- Miriam M Enriquez
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Salvadori E, Di Valentin M, Kay CWM, Pedone A, Barone V, Carbonera D. The electronic structure of the lutein triplet state in plant light-harvesting complex II. Phys Chem Chem Phys 2012; 14:12238-51. [PMID: 22864767 DOI: 10.1039/c2cp40877e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Carotenoid molecules are essential for the life of photosynthetic organisms in that they protect the cell from the photo-oxidative damage induced by light-stress conditions. One of the photo-protective mechanisms involves triplet-triplet energy transfer from the chlorophyll molecules to the carotenoids: a process that is strongly dependent on the electronic properties of the triplet states involved. Here, we obtain a clear description of the triplet state of lutein in LHCII from higher plants for the first time by density functional theory (DFT) calculations. DFT predictions have been validated by comparison with hyperfine couplings obtained with pulsed-ENDOR spectroscopy. Knowledge of the spin density distribution, the frontier orbitals and orbital excitations forms a basis for discussing the requirements for an efficient triplet-triplet energy transfer. The results obtained for the lutein in LHCII are compared with those of the highly-substituted carotenoid peridinin in PCP from Amphidinium carterae [Di Valentin et al., Biochim. Biophys. Acta, 2008, 1777, 295-307]. The presence of substituents in the peridinin molecule does not alter significantly the triplet state electronic structure compared to lutein. Despite the unusual spectroscopic behaviour of the peridinin excited singlet state, lutein and peridinin have similar triplet state properties. In both molecules the unpaired spins are delocalized uniformly over the whole π-conjugated system in an alternating even-odd pattern.
Collapse
Affiliation(s)
- Enrico Salvadori
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|