1
|
Rogers DM, Do H, Hirst JD. Electronic circular dichroism of proteins computed using a diabatisation scheme. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- David M. Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, People’s Republic of China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, People’s Republic of China
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
2
|
Segatta F, Rogers DM, Dyer NT, Guest EE, Li Z, Do H, Nenov A, Garavelli M, Hirst JD. Near-Ultraviolet Circular Dichroism and Two-Dimensional Spectroscopy of Polypeptides. Molecules 2021; 26:E396. [PMID: 33451152 PMCID: PMC7828623 DOI: 10.3390/molecules26020396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento di Chimica Industriale “Toso Montanari”, Universita’ degli Studi di Bologna, Viale del Risorgimento, 4, I-40136 Bologna, Italy; (F.S.); (A.N.); (M.G.)
| | - David M. Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (D.M.R.); (N.T.D.); (E.E.G.)
| | - Naomi T. Dyer
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (D.M.R.); (N.T.D.); (E.E.G.)
| | - Ellen E. Guest
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (D.M.R.); (N.T.D.); (E.E.G.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China;
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”, Universita’ degli Studi di Bologna, Viale del Risorgimento, 4, I-40136 Bologna, Italy; (F.S.); (A.N.); (M.G.)
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Universita’ degli Studi di Bologna, Viale del Risorgimento, 4, I-40136 Bologna, Italy; (F.S.); (A.N.); (M.G.)
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (D.M.R.); (N.T.D.); (E.E.G.)
| |
Collapse
|
3
|
Apostolidou C. Vibrational Spectra of the OH Radical in Water: Ab Initio Molecular Dynamics Simulations and Quantum Chemical Calculations Using Hybrid Functionals. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Apostolidou
- Mulliken Center for Theoretical Chemistry Institute of Physical and Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstraße 4 Bonn 53115 Germany
| |
Collapse
|
4
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
5
|
Hanson-Heine MWD, Husseini FS, Hirst JD, Besley NA. Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes. J Chem Theory Comput 2016; 12:1905-18. [DOI: 10.1021/acs.jctc.5b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fouad S. Husseini
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
6
|
Yamada T, Aida M. Fundamental frequency from classical molecular dynamics. Phys Chem Chem Phys 2015; 17:3227-40. [PMID: 25519091 DOI: 10.1039/c4cp04068f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give a theoretical validation for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the following questions: (1) What is the appropriate initial condition of classical MD to calculate the fundamental frequency? (2) From that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit of using ab initio MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories. As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ: one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio MD to frequency calculations of C-H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower for large molecules.
Collapse
Affiliation(s)
- Tomonori Yamada
- Center for Quantum Life Sciences and Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | | |
Collapse
|
7
|
Li Z, Robinson D, Hirst JD. Vibronic structure in the far-UV electronic circular dichroism spectra of proteins. Faraday Discuss 2015; 177:329-44. [DOI: 10.1039/c4fd00163j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Franck–Condon effect is considered and the vibrational structure of the πnbπ* transition of the peptide backbone is incorporated into matrix method calculations of the electronic circular dichroism (CD) spectra of proteins in the far-ultraviolet. We employ the state-averaged CASPT2 method to calculate the ground and πnbπ* excited state geometries and frequencies of N-methylacetamide (NMA), which represents the peptide chromophore. The results of these calculations are used to incorporate vibronic levels of the excited states into the matrix method calculation. The CD spectra of a set of 49 proteins, comprising a range of structural types, are calculated to assess the influence of the vibrational structure. The calculated spectra of α-helical proteins are better resolved using the vibronic parameters and correlation between the experimental and the calculated intensity of less regular β structure proteins improves over most wavelengths in the far-UV. No obvious improvement is observed in the calculated spectra of regular β-sheet proteins. Our high-level ab initio calculations of the vibronic structure of the πnbπ* transition in NMA have provided some further insight into the physical origins of the nature of protein CD spectra in the far-UV.
Collapse
Affiliation(s)
- Zhuo Li
- School of Chemistry
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | - David Robinson
- School of Chemistry
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | |
Collapse
|
8
|
Pazderková M, Profant V, Seidlerová B, Dlouhá H, Hodačová J, Jávorfi T, Siligardi G, Baumruk V, Bednárová L, Maloň P. Electronic circular dichroism of the chiral rigid tricyclic dilactam with nonplanar tertiary amide groups. J Phys Chem B 2014; 118:11100-8. [PMID: 25180568 DOI: 10.1021/jp5063463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electronic circular dichroism (ECD) of the spirocyclic dilactam 5,8-diazatricyclo[6,3,0,0(1,5)]undecane-4,9-dione has been measured in the extended wavelength range (170-260 nm) utilizing far-UV CD instrumentation including synchrotron radiation light source. The data of this model of two nonplanar tertiary amide groups interacting within the rigid chiral environment provided new information particularly about the shorter wavelength π-π* transition region below 190 nm. The interpretation using TDDFT calculations confirmed that effects of amide nonplanarity follow our previous observations on monolactams as far as amide n-π* transitions are concerned. ECD band in the n-π* transition region of the nonplanar diamide exhibits an identical bathochromic shift and its sign remains tied to the sense of nonplanar deformation in the same way. As far as n-π* transitions are concerned amide nonplanarity acts as a local phenomenon independently reflecting sum properties of single amide groups. On the other hand, CD bands associated with π-π* transitions (found between ∼170 to 210 nm) form an exciton-like couplet with the sign pattern determined by mutual orientation of the associated electric transition moments. This sign pattern follows predictions pertaining to a coupled oscillator. The influence of amide nonplanarity on π-π* transitions is only minor and concentrates into the shorter wavelength lobe of the π-π* couplet. The detailed analysis of experimental ECD with the aid of TDDFT calculations shows that there is only little interaction between effects of inherent chirality caused by nonplanarity of amide groups and amide-amide coupling. Consequently these two effects can be studied nearly independently using ECD. In addition, the calculations indicate that participation of other type of transitions (n-σ*, π-σ* or Rydberg type transitions) is only minor and is concentrated below 180 nm.
Collapse
Affiliation(s)
- Markéta Pazderková
- Faculty of Mathematics and Physics, Charles University in Prague , Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barone V, Biczysko M, Bloino J. Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation. Phys Chem Chem Phys 2014; 16:1759-87. [PMID: 24346191 PMCID: PMC4604664 DOI: 10.1039/c3cp53413h] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Computation of full infrared (IR) and Raman spectra (including absolute intensities and transition energies) for medium- and large-sized molecular systems beyond the harmonic approximation is one of the most interesting challenges of contemporary computational chemistry. Contrary to common beliefs, low-order perturbation theory is able to deliver results of high accuracy (actually often better than those issuing from current direct dynamics approaches) provided that anharmonic resonances are properly managed. This perspective sketches the recent developments in our research group toward the development of a robust and user-friendly virtual spectrometer rooted in second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure. Several examples are explicitly worked out in order to illustrate the features of our computational tool together with the most important ongoing developments.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
10
|
Beck JP, Gaigeot MP, Lisy JM. Anharmonic vibrations of N-H in Cl(-)(N-methylacetamide)1(H2O)(0-2)Ar2 cluster ions. Combined IRPD experiments and BOMD simulations. Phys Chem Chem Phys 2013; 15:16736-45. [PMID: 23986352 DOI: 10.1039/c3cp52418c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infrared Predissociation (IRPD) spectra of Cl(-)(NMA)1(H2O)0-2Ar2 combined with Born-Oppenheimer Molecular Dynamics (BOMD) IR spectra have been acquired, providing the structure and dynamics of these systems. We show that the chloride ion is bound to the hydrogen of the amide N-H group, forming a strong ionic hydrogen bond, weakening the N-H stretch, and shifting it to lower frequency. The presence of water molecules enhances the ionic hydrogen bond by binding to the amide carbonyl oxygen of NMA and shifts the N-H stretch further to lower frequency. The BOMD IR spectra can recapture all, but about 100 cm(-1), of the 600 to 700 cm(-1) shifts due to the strong N-H stretch anharmonicities observed in experiments. This residual error was found to be due to the lack of zero point energy in the classical treatment of motion in the BOMD method.
Collapse
Affiliation(s)
- Jordan P Beck
- Concordia University Wisconsin, 12800 N. Lakeshore Drive, Mequon, Wisconsin 53097, USA
| | | | | |
Collapse
|
11
|
Do H, Deeth RJ, Besley NA. Computational study of the structure and electronic circular dichroism spectroscopy of blue copper proteins. J Phys Chem B 2013; 117:8105-12. [PMID: 23773120 DOI: 10.1021/jp404107j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of the electronic circular dichroism (CD) spectra of the oxidized form of the blue copper proteins plastocyanin and cucumber basic protein and the relationship between the observed spectral features and the structure of the active site of the protein is investigated. Excitation energies and transition strengths are computed using multireference configuration interaction, and it is shown that computed spectra based on coordinates from the crystal structure or a single structure optimized in quantum mechanics/molecular mechanics (QM/MM) or ligand field molecular mechanics (LFMM) are qualitatively incorrect. In particular, the rotational strength of the ligand to metal charge transfer band is predicted to be too small or have the incorrect sign. By considering calculations on active site models with modified structures, it is shown that the intensity of this band is sensitive to the nonplanarity of the histidine and cysteine ligands coordinated to copper. Calculation of the ultraviolet absorption and CD spectra based upon averaging over many structures drawn from a LFMM molecular dynamics simulation are in good agreement with experiment, and superior to analogous calculations based upon structures from a classical molecular dynamics simulation. This provides evidence that the LFMM force field provides an accurate description of the molecular dynamics of these proteins.
Collapse
Affiliation(s)
- Hainam Do
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
12
|
Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B. Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 2013; 15:6608-22. [DOI: 10.1039/c3cp44302g] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Hanson-Heine MWD, George MW, Besley NA. Investigating the Calculation of Anharmonic Vibrational Frequencies Using Force Fields Derived from Density Functional Theory. J Phys Chem A 2012; 116:4417-25. [DOI: 10.1021/jp301670f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Michael W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U.K
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U.K
| |
Collapse
|