1
|
Teimouri MB, Deperasińska I, Rammo M, Banasiewicz M, Stark CW, Dobrzycki Ł, Cyrański MK, Rebane A, Gryko DT. Strongly Polarized π-Extended 1,4-Dihydropyrrolo[3,2- b]pyrroles Fused with Tetrazolo[1,5- a]quinolines. J Org Chem 2024; 89:4657-4672. [PMID: 38530877 PMCID: PMC11002929 DOI: 10.1021/acs.joc.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
A straightforward route to 1,4-dihydropyrrolo[3,2-b]pyrroles comprised of two electron-withdrawing quinoline or tetrazolo[1,5-a]quinoline scaffolds has been developed. The versatile multicomponent reaction affording 1,4-dihydropyrrolo[3,2-b]pyrroles combined with intramolecular direct arylation enables assembly of these products in just three steps from anilines with overall yields exceeding 30%. The planarized, ladder-type heteroacenes possess up to 14 conjugated rings. These nominally quadrupolar materials exhibit efficient fluorescence with wavelengths spanning most of the visible spectrum from green-yellow for the dyes possessing biaryl bridges and orange-red for the fully fused systems. In many cases, the fluorescence quantum yields are large, the solvatofluorochromic effects are strong, and the fluorescence is maintained even in crystalline state. Analysis of the electronic structure of these molecular architectures using quantum chemical methods suggests that the character and position of the flanking heterocycle determine the shape of HOMO and LUMO and their extension to N-aryl substituents, influencing the values of molar absorption coefficient. An experimental study of the two-photon absorption (2PA) properties has revealed that it occurs in the 700-800 nm range with apparent deviation from the Laporte parity selection rule, which may be attributed to Hertzberg-Teller contribution to vibronically allowed 2PA transition.
Collapse
Affiliation(s)
- Mohammad B. Teimouri
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Faculty
of Chemistry, Kharazmi University, Mofateh Ave, Tehran 15719-14911, Iran
| | - Irena Deperasińska
- Institute
of Physics of Polish Academy of Sciences, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland
| | - Matt Rammo
- National
Institute for Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Marzena Banasiewicz
- Institute
of Physics of Polish Academy of Sciences, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland
| | - Charles W. Stark
- National
Institute for Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Łukasz Dobrzycki
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michał K. Cyrański
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Aleksander Rebane
- National
Institute for Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
- Department
of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Daniel T. Gryko
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
2
|
Jaiswal A, Rani S, Singh GP, Hassan M, Nasrin A, Gomes VG, Saxena S, Shukla S. Additive-Free All-Carbon Composite: A Two-Photon Material System for Nanopatterning of Fluorescent Sub-Wavelength Structures. ACS NANO 2021; 15:14193-14206. [PMID: 34435496 DOI: 10.1021/acsnano.1c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The major bottleneck in fabrication of engineered 3D nanostructures is the choice of materials. Adding functionality to these nanostructures is a daunting task. In order to mitigate these issues, we report a two-photon patternable all carbon material system which can be used to fabricate fluorescent 3D micro/nanostructures using two-photon lithography, with subwavelength resolution. The synthesized material system eliminates the need to use conventional two-photon absorbing materials such as two-photon dyes or two-photon initiators. We have used two different trifunctional acrylate monomers and carbon dots, synthesized hydrothermally from a polyphenolic precursor, to formulate a two-photon processable resin. Upon two-photon excitation, photogenerated electrons in the excited states of the carbon dots facilitate the free radical formation at the surface of the carbon dots. These radicals, upon interaction with vinyl moieties, enable cross-linking of acrylate monomers. Free-radical induced two-photon polymerization of acrylate monomers without any conventional proprietary two-photon absorbing materials was accomplished at an ultrafine subwavelength resolution of 250 nm using 800 nm laser excitation. The effect of critical parameters such as average laser power, carbon dot concentration, and radiation exposure were determined for the fabrication of one-, two-, and three-dimensional functional nanostructures, applicable in a range of domains where fluorescence and toxicity are of the utmost importance. A fabrication speed as high as 100 mm/s was achieved. The ability to fabricate functional 3D micro-/nanostructures is anticipated to instigate a paradigm shift in various areas such as metamaterials, energy storage, drug delivery, and optoelectronics to name a few.
Collapse
Affiliation(s)
- Arun Jaiswal
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sweta Rani
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Gaurav Pratap Singh
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Mahbub Hassan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aklima Nasrin
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vincent G Gomes
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Saxena
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Shobha Shukla
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay-Monash Research Academy, Mumbai 400076, Maharashtra, India
| |
Collapse
|
3
|
Li G, Wang S, Yang S, Liu G, Hao P, Zheng Y, Long G, Li D, Zhang Y, Yang W, Xu L, Gao W, Zhang Q, Cui G, Tang B. Synthesis, Photophysical Properties and Two‐Photon Absorption Study of Tetraazachrysene‐based N‐Heteroacenes. Chem Asian J 2019; 14:1807-1813. [DOI: 10.1002/asia.201801656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/13/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Gang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Shuaihua Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Shufan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Guangfeng Liu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
- Laboratoire de Chimie des Polymères, CP 206/01Université Libre de Bruxelles Campus de la Plaine 1050 Bruxelles Belgium
| | - Pin Hao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Yusen Zheng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Shantou 515063 P.R. China
| | - Guankui Long
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 639798 Singapore
| | - Dandan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Wenbin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Shantou 515063 P.R. China
| | - Weibo Gao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 639798 Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal University Jinan 250014 P.R. China
| |
Collapse
|
4
|
Yang X, Wang N, Zhang L, Dai L, Shao H, Jiang X. Organic nanostructure-based probes for two-photon imaging of mitochondria and microbes with emission between 430 nm and 640 nm. NANOSCALE 2017; 9:4770-4776. [PMID: 28337499 DOI: 10.1039/c7nr00342k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multi-photon excitation and versatile fluorescent probes are in high need for biological imaging, since one probe can satisfy many needs as a biosensor. Herein we synthesize a series of two-photon excited probes based on tetraphenylethene (TPE) structures (TPE-Acr, TPE-Py, and TPE-Quino), which can image both mammalian cells and bacteria based on aggregation-induced emission (AIE) without washing them. Because of cationic moieties, the fluorescent molecules can aggregate into nanoscale fluorescent organic nanoscale dots to image mitochondria and bacteria with tunable emissions using both one-photon and two-photon excitation. Our research demonstrates that these AIE-dots expand the functions of luminescent organic dots to construct efficient fluorescent sensors applicable to both one-photon and two-photon excitation for bio-imaging of bacteria and mammalian cells.
Collapse
Affiliation(s)
- Xinglong Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. and CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China. and University of Chinese Academy of Science, Beijing, 100049, China
| | - Nuoxin Wang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| | - Lingmin Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| | - Luru Dai
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| | - Huawu Shao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| |
Collapse
|
5
|
Manuela M, Raposo M, Herbivo C, Hugues V, Clermont G, Castro MCR, Comel A, Blanchard-Desce M. Synthesis, Fluorescence, and Two-Photon Absorption Properties of Push-Pull 5-Arylthieno[3,2-b]thiophene Derivatives. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Manuela
- Center of Chemistry; University of Minho, Campus of Gualtar; 4710-057 Braga Portugal
| | - M. Raposo
- Center of Chemistry; University of Minho, Campus of Gualtar; 4710-057 Braga Portugal
| | - Cyril Herbivo
- Center of Chemistry; University of Minho, Campus of Gualtar; 4710-057 Braga Portugal
| | - Vincent Hugues
- Univ. Bordeaux; Institut des Sciences Moléculaires (UMR 5255 CNRS); 33405 Talence France
| | - Guillaume Clermont
- Univ. Bordeaux; Institut des Sciences Moléculaires (UMR 5255 CNRS); 33405 Talence France
| | - M. Cidália R. Castro
- Center of Chemistry; University of Minho, Campus of Gualtar; 4710-057 Braga Portugal
| | - Alain Comel
- Université de Lorraine; Institut Jean Barriol; Laboratoire de Chimie et Physique - Analyse Multi-échelles des Milieux Complexes; 57048 Metz Cedex France
| | | |
Collapse
|
6
|
Cai ZB, Shen HM, Zhou M, Li SL, Tian YP. Novel A–(π–D–π–A)1–3 branched fluorophores displaying high two-photon absorption. RSC Adv 2016. [DOI: 10.1039/c6ra02733d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel A–(π–D–π–A)3 compounds bearing pyridine end groups are apparently effective in achieving large two-photon responses owing to strong charge transfer.
Collapse
Affiliation(s)
- Zhi-Bin Cai
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Hai-Min Shen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Mao Zhou
- Zhejiang Poly Pharmaceutical Co. Ltd
- Hangzhou 310009
- P. R. China
| | - Sheng-Li Li
- Department of Chemistry
- Anhui Province Key Laboratory of Functional Inorganic Materials
- Anhui University
- Hefei 230039
- P. R. China
| | - Yu-Peng Tian
- Department of Chemistry
- Anhui Province Key Laboratory of Functional Inorganic Materials
- Anhui University
- Hefei 230039
- P. R. China
| |
Collapse
|
7
|
Gu P, Xu X, Zhou F, Zhao T, Ye G, Liu G, Xu Q, Ge J, Xu Q, Lu J. Study of Linear and Nonlinear Optical Properties of Four Derivatives of Substituted Aryl Hydrazones of 1,8-Naphthalimide. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201300842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Zhou FX, Zheng Z, Zhou HP, Ke WZ, Wang JQ, Yu ZP, Jin F, Yang JX, Wu JY, Tian YP. A new 2,2′:6′,2′′-terpyridine-based ligand and its complexes: structures, photophysical properties and DFT calculations to evaluate the halogen effect on the TPA. CrystEngComm 2012. [DOI: 10.1039/c2ce25467k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Liu XT, Guo JF, Ren AM, Xu Z, Huang S, Feng JK. Theoretical insight into linear optical and two-photon absorption properties for a series of N-arylpyrrole-based dyes. Org Biomol Chem 2012; 10:7527-35. [DOI: 10.1039/c2ob25916h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Li Q, Zhong C, Huang J, Huang Z, Pei Z, Liu J, Qin J, Li Z. Conjugated Polymers with Pyrrole as the Conjugated Bridge: Synthesis, Characterization, and Two-Photon Absorption Properties. J Phys Chem B 2011; 115:8679-85. [DOI: 10.1021/jp2015484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qianqian Li
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 430072, P. R. China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 430072, P. R. China
| | - Jing Huang
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 430072, P. R. China
| | - Zhenli Huang
- Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, 430074, P. R. China
| | - Zhiguo Pei
- Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, 430074, P. R. China
| | - Jun Liu
- Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, 430074, P. R. China
| | - Jingui Qin
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 430072, P. R. China
| | - Zhen Li
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 430072, P. R. China
| |
Collapse
|