1
|
Fleurbaey H, Kassi S, Campargue A. Room temperature detection of the (H 2) 2 dimer. Phys Chem Chem Phys 2024; 26:21974-21981. [PMID: 39113563 DOI: 10.1039/d4cp02605e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The hydrogen dimer, (H2)2, is among the most weakly bound van der Waals complexes and a prototype species for first principles ab initio studies. The detection of the (H2)2 infrared absorption spectrum was reported more than sixty years ago at a temperature of 20 K. Due to the sharp decrease of the (H2)2 abundance with temperature, detection at room temperature was generally considered hardly achievable. Here we report the first room temperature detection of partly resolved rotational structures of (H2)2 by cavity ring down spectroscopy at sub-atmospheric pressures, in the region of the first overtone band of H2 near 1.2 μm. The quantitative analysis of the absorption features observed around ten allowed or forbidden transition frequencies of the monomer provides insight on the structure of this elusive species and a benchmark for future theoretical studies.
Collapse
Affiliation(s)
- H Fleurbaey
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | - S Kassi
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | - A Campargue
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| |
Collapse
|
2
|
Tachikawa H. Mechanism of ionic dissociation of HCl in the smallest water clusters. Phys Chem Chem Phys 2024; 26:3623-3631. [PMID: 38224187 DOI: 10.1039/d3cp05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The dissociation of strong acids into water is a fundamental process in chemistry and biology. Determining the minimum number of water molecules that can result in an ionic dissociation of hydrochloric acid (HCl → H+ + Cl-) remains a challenging subject. In this study, the reactions of H2O with HCl(H2O)n-1 (HCl-H2O cluster), i.e., HCl(H2O)n-1 + H2O (n = 3-7), were investigated by using the direct ab initio molecular dynamics (AIMD) method. Direct AIMD calculations were performed to set the collision energy of H2O to zero for all trajectories. For n = 3, no reaction occurred. In contrast, HCl dissociated to H+ + Cl- at n = 4, forming a contact ion pair (cIP) and solvent-separated ion pair (ssIP) as products. The reactions were expressed as HCl(H2O)3 + H2O → H3O+(H2O)2Cl- (ssIP), and HCl(H2O)3 + H2O → H3O+(Cl-)(H2O)2 (cIP). The ion pair (IP) products were dependent on the collision site of H2O relative to HCl(H2O)3. For n = 5-7, both IPs were formed through the reaction between H2O and HCl(H2O)n-1 (n = 5-7). The reaction between HCl and (H2O)4 (HCl + (H2O)4 → HCl(H2O)4) was non-reactive in IP formation. The reaction mechanism was discussed based on the theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
3
|
Voute A, Gatti F, Møller KB, Henriksen NE. Femtochemistry of bimolecular reactions from weakly bound complexes: computational study of the H + H'OD → H'OH + D or HOD + H' exchange reactions. Phys Chem Chem Phys 2021; 23:27207-27226. [PMID: 34850799 DOI: 10.1039/d1cp04391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full-dimensional wavepacket propagation describing the bimolecular exchange reactions H + H'OD → H'OH + D or HOD + H' initiated by photolysis of HCl in the hydrogen-bound complex (HCl)⋯(HOD) is reported. The dynamics of this reaction is carried out with the MCTDH method on an ab initio potential energy surface (PES) of H3O and the initial state is derived from the ground state wavefunction of the complex obtained by relaxation on its own electronic ground state ab initio PES. The description of the system makes use of polyspherical coordinates parametrizing a set of Radau and Jacobi vectors. The calculated energy- and time-resolved reaction probabilities show, owing to the large collision energies at play stemming from the (almost full) photolysis of HCl, that the repulsion between oxygen in the H'OD molecule and the incoming hydrogen atom is the main feature of the collision and leads to non-reactive scattering. No abstraction reaction products are observed. However, both exchange processes are still observable, with a preference in O-H' bond dissociation over that of O-D. The selectivity is reversed upon vibrational pre-excitation of the O-D stretching mode in the H'OD molecule. It is shown that, after the collision, the hydrogen atom of HCl does most likely not encounter the almost stationary chlorine atom again but we also consider the limit case where the H atom is forced to collide multiple times against H'OD as a result of being pushed back by the Cl atom.
Collapse
Affiliation(s)
- Alexandre Voute
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Horká-Zelenková V, Seyfang G, Dietiker P, Quack M. Nuclear Spin Symmetry Conservation Studied for Symmetric Top Molecules (CH3D, CHD3, CH3F, and CH3Cl) in Supersonic Jet Expansions. J Phys Chem A 2019; 123:6160-6174. [DOI: 10.1021/acs.jpca.9b02580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veronika Horká-Zelenková
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejskova 2155/3, 182 23 Prague 8, Czech Republic
| | - Georg Seyfang
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Peter Dietiker
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Martin Quack
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Kwasniewski D, Butler M, Reisler H. Vibrational predissociation of the phenol-water dimer: a view from the water. Phys Chem Chem Phys 2019; 21:13968-13976. [PMID: 30511053 DOI: 10.1039/c8cp06581k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational predissociation (VP) dynamics of the phenol-water (PhOH-H2O) dimer were studied by detecting H2O fragments and using velocity map imaging (VMI) to infer the internal energy distributions of PhOH cofragments, pair-correlated with selected rotational levels of the H2O fragments. Following infrared (IR) laser excitation of the hydrogen-bonded OH stretch fundamental of PhOH (Pathway 1) or the asymmetric OH stretch localized on H2O (Pathway 2), dissociation to H2O + PhOH was observed. H2O fragments were monitored state-selectively by using 2+1 Resonance-Enhanced Multiphoton Ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). VMI of H2O in selected rotational levels was used to derive center-of-mass (c.m.) translational energy (ET) distributions. The pair-correlated internal energy distributions of the PhOH cofragments derived via Pathway 1 were well described by a statistical prior distribution. On the other hand, the corresponding distributions obtained via Pathway 2 show a propensity to populate higher-energy rovibrational levels of PhOH than expected from a statistical distribution and agree better with an energy-gap model. The REMPI spectra of the H2O fragments from both pathways could be fit by Boltzmann plots truncated at the maximum allowed energy, with a higher temperature for Pathway 2 than that for Pathway 1. We conclude that the VP dynamics depends on the OH stretch level initially excited.
Collapse
Affiliation(s)
- Daniel Kwasniewski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
| | - Mitchell Butler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
| | - Hanna Reisler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
| |
Collapse
|
6
|
Shin HK. Relaxation of the H 2O Overtone Bending Vibration in the Water Dimer···Hydroxyl Radical Complex. J Phys Chem A 2018; 122:5510-5517. [PMID: 29846069 DOI: 10.1021/acs.jpca.8b03674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relaxation mechanism of the overtone bending vibration in the collision of the water dimer with the vibrationally excited hydroxyl radical is studied by use of trajectory procedures. The transfer of the OH(v = 1) energy to the dimer stretches is followed by a near-resonant first overtone transition to the donor monomer. Nearly a quarter of the trajectories undergo a complex-mode collision, forming the (H2O)2···OH complex bound by a hydrogen bond with the lifetime ranging from a subpicosecond scale to >100 ps. The overtone vibration relaxes to the ground state, transferring approximately half of its energy to the dimer hydrogen-bonding (H2O···H2O) and the remaining half to the complex hydrogen-bonding (H2O)2···OH, via near-resonant pathways, each consisting of a series of intermolecular low-frequency vibrations.
Collapse
Affiliation(s)
- H K Shin
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
7
|
Zuraski K, Wang QK, Kwasniewski D, Bowman JM, Reisler H. Predissociation dynamics of the HCl-(H 2O) 3 tetramer: An experimental and theoretical investigation. J Chem Phys 2018; 148:204303. [PMID: 29865837 DOI: 10.1063/1.5026585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cyclic HCl-(H2O)3 tetramer is the largest observed neutral HCl-(H2O)n cluster. The vibrational predissociation of HCl-(H2O)3 is investigated by theory, quasiclassical trajectory (QCT) calculations, and experiment, following the infrared excitation of the hydrogen-bonded OH-stretch fundamental. The energetically possible dissociation pathways are HCl + (H2O)3 (Pathway 1) and H2O + HCl-(H2O)2 (Pathway 2). The HCl and H2O monomer fragments are observed by 2 + 1 resonance enhanced multiphoton ionization combined with time-of-flight mass spectrometry, and their rotational energy distributions are inferred and compared to the theoretical results. Velocity map images of the monomer fragments in selected rotational levels are used for each pathway to obtain pair-correlated speed distributions. The fragment speed distributions obtained by experiment and QCT calculations are broad and structureless, encompassing the entire range of allowed speeds for each pathway. Bond dissociation energies, D0, are estimated experimentally from the endpoints of the speed distributions: 2100 ± 300 cm-1 and 2400 ± 100 cm-1 for Pathway 1 and Pathway 2, respectively. These values are lower but in the same order as the corresponding calculated D0: 2426 ± 23 cm-1 and 2826 ± 19 cm-1. The differences are attributed to contributions from vibrational hot bands of the clusters that appear in the high-speed tails of the experimental pair-correlated distributions. Satisfactory agreement between theory and experiment is achieved when comparing the monomer fragments' rotational energies, the shapes of the speed distributions, and the average fragment speeds and center-of-mass translational energies. Insights into the dissociation mechanism and lifetime are gained from QCT calculations performed on a previously reported many-body potential energy surface. It is concluded that the dissociation lifetime is on the order of 10 ps and that the final trimer products are in their lowest energy cyclic forms.
Collapse
Affiliation(s)
- Kristen Zuraski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Qingfeng Kee Wang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Daniel Kwasniewski
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Hanna Reisler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
8
|
Abstract
Trajectory procedures are used to study the collision between the vibrationally excited H2O and the ground-state (H2O)2 with particular reference to energy transfer to the hydrogen bond through the inter- and intramolecular pathways. In nearly 98% of the trajectories, energy transfer processes occur on a subpicosecond scale (≤0.7 ps). The H2O transfers approximately three-quarters of its excitation energy to the OH stretches of the dimer. The first step of the intramolecular pathway in the dimer involves a near-resonant first overtone transition from the OH stretch to the bending mode. The energy transfer probability in the presence of the 1:2 resonance is 0.61 at 300 K. The bending mode then redistributes its energy to low-frequency intermolecular vibrations in a series of small excitation steps, with the pathway which results in the hydrogen-bonding modes gaining most of the available energy. The hydrogen bonding in ∼50% of the trajectories ruptures on vibrational excitation, leaving one quantum in the bend of the monomer fragment. In a small fraction of trajectories, the duration of collision is longer than 1 ps, during which the dimer and H2O form a short-lived complex through a secondary hydrogen bond, which undergoes large amplitude oscillations.
Collapse
Affiliation(s)
- H K Shin
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
9
|
Angelova S, Nikolova V, Pereva S, Spassov T, Dudev T. α-Cyclodextrin: How Effectively Can Its Hydrophobic Cavity Be Hydrated? J Phys Chem B 2017; 121:9260-9267. [PMID: 28885027 DOI: 10.1021/acs.jpcb.7b04501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclodextrins (CDs) are among the most widely used native host systems with ability to form inclusion complexes with various molecular objects. This ability is so strong that the "hydrophobic" CD cavity never remains empty, even in the guest-free state it is filled with water molecules. However, no consensus has been reached concerning both the total number of hydrating water molecules and their preferred binding location in the CDs. Several outstanding questions regarding the CD hydration still wait to be answered: (1) Which spots of the CD cavity ("hot spots") have the highest affinity for the guest water molecules? (2) How stable are water clusters inside the cavity? (3) Which mode of water binding, sequential or bulk, is thermodynamically more favored? (4) What is the upper limit of the number of water molecules bound inside the host cavity? (5) What factors do control the CD hydration process? Here, using αCD as a typical representative of the cyclodextrin family, we endeavor to answer these questions by combining experimental measurements (differential scanning calorimetry and thermogravimetry) with theoretical (DFT) calculations. Enthalpies of the αCD hydrate formation are evaluated and the role of different factors, such as the number and mode of binding (sequential vs bulk) of water molecules, type of hydrogen bonds established (water-water vs water-αCD), and the dielectric properties of the medium, on the complexation process is assessed. The results obtained shed light on the intimate mechanism of water binding to αCD and disclose the key factors governing the process.
Collapse
Affiliation(s)
- Silvia Angelova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| | - Stiliyana Pereva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| | - Tony Spassov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| |
Collapse
|
10
|
Tachikawa H. Proton Transfer Rates in Ionized Hydrogen Chloride–Water Clusters: A Direct Ab Initio Molecular Dynamics Study. J Phys Chem A 2017; 121:5237-5244. [DOI: 10.1021/acs.jpca.7b05112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Graduate
School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
11
|
Zuraski K, Kwasniewski D, Samanta AK, Reisler H. Vibrational Predissociation of the HCl-(H 2O) 3 Tetramer. J Phys Chem Lett 2016; 7:4243-4247. [PMID: 27723347 DOI: 10.1021/acs.jpclett.6b01848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vibrational predissociation of the HCl-(H2O)3 tetramer, the largest HCl-(H2O)n cluster for which HCl is not predicted to be ionized, is reported. This work focuses on the predissociation pathway giving rise to H2O + HCl-(H2O)2 following IR laser excitation of the H-bonded OH stretch fundamental. H2O fragments are monitored state selectively by 2 + 1 resonance-enhanced multiphoton ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). Velocity map images of H2O in selected rotational levels are used to determine translational energy distributions from which the internal energy distributions in the pair-correlated cofragments are derived. From the maximum translational energy release, the bond dissociation energy, D0 = 2400 ± 100 cm-1, is determined for the investigated channel. The energy distributions in the fragments are broad, encompassing the entire range of allowed states. The importance of cooperative (nonpairwise) interactions is discussed.
Collapse
Affiliation(s)
- Kristen Zuraski
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Daniel Kwasniewski
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Amit K Samanta
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Hanna Reisler
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
12
|
Ceriotti M, Fang W, Kusalik PG, McKenzie RH, Michaelides A, Morales MA, Markland TE. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chem Rev 2016; 116:7529-50. [DOI: 10.1021/acs.chemrev.5b00674] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michele Ceriotti
- Laboratory
of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wei Fang
- Thomas
Young Centre, London Centre for Nanotechnology and Department of Physics
and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Peter G. Kusalik
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Ross H. McKenzie
- School
of Mathematics and Physics, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Angelos Michaelides
- Thomas
Young Centre, London Centre for Nanotechnology and Department of Physics
and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Miguel A. Morales
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
13
|
Samanta AK, Wang Y, Mancini JS, Bowman JM, Reisler H. Energetics and Predissociation Dynamics of Small Water, HCl, and Mixed HCl–Water Clusters. Chem Rev 2016; 116:4913-36. [DOI: 10.1021/acs.chemrev.5b00506] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit K. Samanta
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Yimin Wang
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - John S. Mancini
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Hanna Reisler
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
14
|
Ghosh S, Bhattacharyya S, Wategaonkar S. Dissociation Energies of Sulfur-Centered Hydrogen-Bonded Complexes. J Phys Chem A 2015; 119:10863-70. [DOI: 10.1021/acs.jpca.5b08185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
15
|
Samanta AK, Czakó G, Wang Y, Mancini JS, Bowman JM, Reisler H. Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in small water and HCl clusters. Acc Chem Res 2014; 47:2700-9. [PMID: 25072730 DOI: 10.1021/ar500213q] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water is one of the most pervasive molecules on earth and other planetary bodies; it is the molecule that is searched for as the presumptive precursor to extraterrestrial life. It is also the paradigm substance illustrating ubiquitous hydrogen bonding (H-bonding) in the gas phase, liquids, crystals, and amorphous solids. Moreover, H-bonding with other molecules and between different molecules is of the utmost importance in chemistry and biology. It is no wonder, then, that for nearly a century theoreticians and experimentalists have tried to understand all aspects of H-bonding and its influence on reactivity. It is somewhat surprising, therefore, that several fundamental aspects of H-bonding that are particularly important for benchmarking theoretical models have remained unexplored experimentally. For example, even the binding strength between two gas-phase water molecules has never been determined with sufficient accuracy for comparison with high-level electronic structure calculations. Likewise, the effect of cooperativity (nonadditivity) in small H-bonded networks is not known with sufficient accuracy. An even greater challenge for both theory and experiment is the description of the dissociation dynamics of H-bonded small clusters upon acquiring vibrational excitation. This is because of the long lifetimes of many clusters, which requires running classical trajectories for many nanoseconds to achieve dissociation. In this Account, we describe recent progress and ongoing research that demonstrates how the combined and complementary efforts of theory and experiment are enlisted to determine bond dissociation energies (D0) of small dimers and cyclic trimers of water and HCl with unprecedented accuracy, describe dissociation dynamics, and assess the effects of cooperativity. The experimental techniques rely on IR excitation of H-bonded X-H stretch vibrations, measuring velocity distributions of fragments in specific rovibrational states, and determining product state distributions at the pair-correlation level. The theoretical methods are based on high-level ab initio potential energy surfaces used in quantum and classical dynamical calculations. We achieve excellent agreement on D0 between theory and experiments for all of the clusters that we have compared, as well as for cooperativity in ring trimers of water and HCl. We also show that both the long-range and the repulsive parts of the potential must be involved in bond breaking. We explain why H-bonds are so resilient and hard to break, and we propose that a common motif in the breaking of cyclic trimers is the opening of the ring following transfer of one quantum of stretch excitation to form open-chain structures that are weakly bound. However, it still takes many vibrational periods to release one monomer fragment from the open-chain structures. Our success with water and HCl dimers and trimers led us to embark on a more ambitious project: studies of mixed water and HCl small clusters. These clusters eventually lead to ionization of HCl and serve as prototypes of acid dissociation in water. Measurements and calculations of such ionizations are yet to be achieved, and we are now characterizing these systems by adding monomers one at a time. We describe our completed work on the HCl-H2O dimer and mention our recent theoretical results on larger mixed clusters.
Collapse
Affiliation(s)
- Amit K. Samanta
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Gábor Czakó
- Laboratory
of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Yimin Wang
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - John S. Mancini
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Hanna Reisler
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Mancini JS, Samanta AK, Bowman JM, Reisler H. Experiment and Theory Elucidate the Multichannel Predissociation Dynamics of the HCl Trimer: Breaking Up Is Hard To Do. J Phys Chem A 2014; 118:8402-10. [DOI: 10.1021/jp5015753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John S. Mancini
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Amit K. Samanta
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Hanna Reisler
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Samanta AK, Ch’ng LC, Reisler H. Imaging bond breaking and vibrational energy transfer in small water containing clusters. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
|
19
|
Ch'ng LC, Samanta AK, Wang Y, Bowman JM, Reisler H. Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3. J Phys Chem A 2013; 117:7207-16. [PMID: 23536966 DOI: 10.1021/jp401155v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a joint experimental-theoretical study of the predissociation dynamics of the water trimer following excitation of the hydrogen bonded OH-stretch fundamental. The bond dissociation energy (D0) for the (H2O)3 → H2O + (H2O)2 dissociation channel is determined from fitting the speed distributions of selected rovibrational states of the water monomer fragment using velocity map imaging. The experimental value, D0 = 2650 ± 150 cm(-1), is in good agreement with the previously determined theoretical value, 2726 ± 30 cm(-1), obtained using an ab initio full-dimensional potential energy surface (PES) together with Diffusion Monte Carlo calculations [ Wang ; Bowman . J. Chem. Phys. 2011 , 135 , 131101 ]. Comparing this value to D0 of the dimer places the contribution of nonpairwise additivity to the hydrogen bonding at 450-500 cm(-1). Quasiclassical trajectory (QCT) calculations using this PES help elucidate the reaction mechanism. The trajectories show that most often one hydrogen bond breaks first, followed by breaking and re-forming of hydrogen bonds (often with different hydrogen bonds breaking) until, after many picoseconds, a water monomer is finally released. The translational energy distributions calculated by QCT for selected rotational levels of the monomer fragment agree with the experimental observations. The product translational and rotational energy distributions calculated by QCT also agree with statistical predictions. The availability of low-lying intermolecular vibrational levels in the dimer fragment is likely to facilitate energy transfer before dissociation occurs, leading to statistical-like product state distributions.
Collapse
Affiliation(s)
- Lee C Ch'ng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
20
|
Mancini JS, Bowman JM. Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction. J Chem Phys 2013; 138:121102. [DOI: 10.1063/1.4799231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Ch’ng LC, Samanta AK, Czakó G, Bowman JM, Reisler H. Experimental and Theoretical Investigations of Energy Transfer and Hydrogen-Bond Breaking in the Water Dimer. J Am Chem Soc 2012; 134:15430-5. [DOI: 10.1021/ja305500x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lee C. Ch’ng
- Department of Chemistry, University of Southern California, Los Angeles, California
90089-0482, United States
| | - Amit K. Samanta
- Department of Chemistry, University of Southern California, Los Angeles, California
90089-0482, United States
| | - Gábor Czakó
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Hanna Reisler
- Department of Chemistry, University of Southern California, Los Angeles, California
90089-0482, United States
| |
Collapse
|
22
|
Rocher-Casterline BE, Ch'ng LC, Mollner AK, Reisler H. Communication: determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J Chem Phys 2012; 134:211101. [PMID: 21663337 DOI: 10.1063/1.3598339] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bond dissociation energy (D(0)) of the water dimer is determined by using state-to-state vibrational predissociation measurements following excitation of the bound OH stretch fundamental of the donor unit of the dimer. Velocity map imaging and resonance-enhanced multiphoton ionization (REMPI) are used to determine pair-correlated product velocity and translational energy distributions. H(2)O fragments are detected in the ground vibrational (000) and the first excited bending (010) states by 2 + 1 REMPI via the C̃ (1)B(1) (000) ← X̃ (1)A(1) (000 and 010) transitions. The fragments' velocity and center-of-mass translational energy distributions are determined from images of selected rovibrational levels of H(2)O. An accurate value for D(0) is obtained by fitting both the structure in the images and the maximum velocity of the fragments. This value, D(0) = 1105 ± 10 cm(-1) (13.2 ± 0.12 kJ/mol), is in excellent agreement with the recent theoretical value of D(0) = 1103 ± 4 cm(-1) (13.2 ± 0.05 kJ∕mol) suggested as a benchmark by Shank et al. [J. Chem. Phys. 130, 144314 (2009)].
Collapse
|