1
|
Brahem S, Missaoui D, Yazidi O, Najar F, Senent ML. Theoretical structural and spectroscopic characterization of peroxyacetic acid (CH 3-CO-OOH): study of the far infrared region. Phys Chem Chem Phys 2024; 26:12600-12609. [PMID: 38597218 DOI: 10.1039/d3cp05783f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Peroxyacetic acid, a non-rigid oxygenated organic molecule which acts in the atmosphere as a reservoir of HOX and ROX radicals, is studied using highly correlated ab initio methods with the aim of its spectroscopic characterization in the gas phase. The study focuses on the far infrared region providing reliable rovibrational parameters such as energy levels and splittings. The molecule presents three conformers that inter-convert by internal rotation, drawing a potential energy surface of 12 minima. One of them shows prominent stability due to the formation of one weak intramolecular bond between the hydrogen atom of the hydroperoxy group and the oxygen atom of the carbonyl group. For the three minimum energy structures, rotational constants and centrifugal distortion constants are provided. It may be expected that the most stable conformer is the only one contributing to the spectral features in further measurements at low temperature. In this structure, the methyl torsional barrier has been found to be very low, V3 = 88.6 cm-1 producing a splitting of 2.262 cm-1 for the ground vibrational state. The study confirms that the ν20 torsional mode interacts strongly with the other two torsional modes ν19 and ν21, but slightly with the remaining vibrations. Then, a variational procedure in three dimensions allows the exploration of the low-frequency modes. The methyl torsional fundamental ν21 was found to be 49.1 cm-1 (Ai) and 33.4 cm-1 (E). The fundamentals of ν20 (C-O bond torsion) and ν19 (OH torsion) have been computed to be 216.7 cm-1 (A2) and 218.5 cm-1 (E) and 393.6 cm-1 (A2) and 394.1 cm-1. Since non-rigidity can have effects on the reactivity due to the conformer interconversion, and transitions involving low-lying levels can be observed with many spectroscopic techniques, this work can help kinetic studies and assignments of further spectroscopic studies needed for the detection in the gas phase of trace molecules.
Collapse
Affiliation(s)
- Sinda Brahem
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| | - Dorsaf Missaoui
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| | - Ounaies Yazidi
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| | - Faouzi Najar
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| | - María Luisa Senent
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| |
Collapse
|
2
|
Møller KH, Bates KH, Kjaergaard HG. The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation. J Phys Chem A 2019; 123:920-932. [DOI: 10.1021/acs.jpca.8b10432] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kelvin H. Bates
- Center for the Environment, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Intramolecular hydrogen-bonding effects on O H stretch overtone excitation for fluorinated hydroperoxides. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Schrøder SD, Wallberg JH, Kroll JA, Maroun Z, Vaida V, Kjaergaard HG. Intramolecular Hydrogen Bonding in Methyl Lactate. J Phys Chem A 2015; 119:9692-702. [DOI: 10.1021/acs.jpca.5b04812] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sidsel D. Schrøder
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jens H. Wallberg
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jay A. Kroll
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Zeina Maroun
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Henrik G. Kjaergaard
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Penocchio E, Piccardo M, Barone V. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route. J Chem Theory Comput 2015; 11:4689-707. [PMID: 26574259 DOI: 10.1021/acs.jctc.5b00622] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.
Collapse
|
6
|
Indulkar YN, Louie MK, Sinha A. UV photochemistry of peroxyformic acid (HC(O)OOH): an experimental and computational study investigating 355 nm photolysis. J Phys Chem A 2014; 118:5939-49. [PMID: 25050911 DOI: 10.1021/jp5039688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photochemistry of peroxyformic acid (PFA), a molecule of atmospheric interest exhibiting internal hydrogen bonding, is examined by exciting the molecule at 355 nm and detecting the nascent OH fragments using laser-induced fluorescence. The OH radicals are found to be formed in their ground electronic state with the vast majority of available energy appearing in fragment translation. The OH fragments are vibrationally cold (v" = 0) with only modest rotational excitation. The average rotational energy is determined to be 0.35 kcal/mol. Further, the degree of OH rotational excitation from PFA is found to be significantly less than that arising from the dissociation of H2O2 as well as other hydroperoxides over the same wavelength. Ab initio calculation at the EOM-CCSD level is used to investigate the first few electronic excited states of PFA. Differences in the computed torsional potential between PFA and H2O2 help rationalize the observed variation in their respective OH fragment rotational excitation. The calculations also establish that the electronic excited state of PFA accessed in the near UV is of (1)A" symmetry and involves a σ*(O-O) ← n(O) excitation. Additionally, the UV absorption cross section of PFA at 355 and 282 nm is estimated by comparing the yield of OH from PFA at these wavelengths to that from hydrogen peroxide for which the absorption cross sections is known.
Collapse
Affiliation(s)
- Yogesh N Indulkar
- Department of Chemistry and Biochemistry, University of California-San Diego , La Jolla, California 92093-0314, United States
| | | | | |
Collapse
|
7
|
Chen Y, Morisawa Y, Futami Y, Czarnecki MA, Wang HS, Ozaki Y. Combined IR/NIR and density functional theory calculations analysis of the solvent effects on frequencies and intensities of the fundamental and overtones of the C ═ O stretching vibrations of acetone and 2-hexanone. J Phys Chem A 2014; 118:2576-83. [PMID: 24654701 DOI: 10.1021/jp411855b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational overtone studies primarily focus on X-H stretching overtone transitions, where X is an atom like C, O, N, or S. In contrast, the studies on the C ═ O stretching overtones are very scattered. To advance the research in this field, we measured the fundamental, first, and second overtones of the C ═ O stretching vibration of acetone and 2-hexanone in n-hexane, CCl4, and CHCl3, as well as in the vapor phase using FT-IR/FT-NIR spectroscopy. Density functional theory (DFT) calculations have also been performed to help the assignment of the C ═ O stretching bands and to guide interpretation of the experimental results. It was found that the wavenumbers, absorption intensities, and oscillator strengths of the C ═ O stretching bands show marked solvent dependence. In the fundamental and the first overtone regions, the intensities of the C ═ O stretching vibration were found to be pronouncedly more intense than those of the C-H stretching vibration. In the second overtone region, the intensities of the C-H stretching vibration are comparable to those of the C ═ O stretching vibration. The theoretical and observed decrease in integrated intensity upon going from the fundamental to the first overtone of the C ═ O stretching vibration is around 50, which is significantly larger than those of the O-H, C-H, and S-H stretching vibration. Both the calculated and experimental results suggest that excessive weakness in the C ═ O stretching overtone was shown to be a result of both a low anharmonicity and a substantial reduction in the oscillator strength. These results provide new insight into our understanding of the C ═ O stretching vibration.
Collapse
Affiliation(s)
- Yujing Chen
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
8
|
Vaida V, Donaldson DJ. Red-light initiated atmospheric reactions of vibrationally excited molecules. Phys Chem Chem Phys 2014; 16:827-36. [DOI: 10.1039/c3cp53543f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Affiliation(s)
- Edwin L. Sibert
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison , Madison, Wisconsin, 53706, USA
| |
Collapse
|
10
|
Buchanan EG, Dean JC, Zwier TS, Sibert EL. Towards a first-principles model of Fermi resonance in the alkyl CH stretch region: Application to 1,2-diphenylethane and 2,2,2-paracyclophane. J Chem Phys 2013; 138:064308. [DOI: 10.1063/1.4790163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Miller BJ, Du L, Steel TJ, Paul AJ, Södergren AH, Lane JR, Henry BR, Kjaergaard HG. Absolute Intensities of NH-Stretching Transitions in Dimethylamine and Pyrrole. J Phys Chem A 2011; 116:290-6. [DOI: 10.1021/jp209118p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Miller
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lin Du
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Thomas J. Steel
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Allanah J. Paul
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - A. Helena Södergren
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Joseph R. Lane
- Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Bryan R. Henry
- Department of Chemistry, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Hazra MK, Kuang X, Sinha A. Influence of Intramolecular Hydrogen Bonding on OH-Stretching Overtone Intensities and Band Positions in Peroxyacetic Acid. J Phys Chem A 2011; 116:5784-95. [DOI: 10.1021/jp206637t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Montu K. Hazra
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0314, United States
| | | | - Amitabha Sinha
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0314, United States
| |
Collapse
|