1
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Konold PE, Arik E, Weißenborn J, Arents JC, Hellingwerf KJ, van Stokkum IHM, Kennis JTM, Groot ML. Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Nat Commun 2020; 11:4248. [PMID: 32843623 PMCID: PMC7447820 DOI: 10.1038/s41467-020-18065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/31/2020] [Indexed: 11/27/2022] Open
Abstract
Femtosecond time-resolved crystallography (TRC) on proteins enables resolving the spatial structure of short-lived photocycle intermediates. An open question is whether confinement and lower hydration of the proteins in the crystalline state affect the light-induced structural transformations. Here, we measured the full photocycle dynamics of a signal transduction protein often used as model system in TRC, Photoactive Yellow Protein (PYP), in the crystalline state and compared those to the dynamics in solution, utilizing electronic and vibrational transient absorption measurements from 100 fs over 12 decades in time. We find that the photocycle kinetics and structural dynamics of PYP in the crystalline form deviate from those in solution from the very first steps following photon absorption. This illustrates that ultrafast TRC results cannot be uncritically extrapolated to in vivo function, and that comparative spectroscopic experiments on proteins in crystalline and solution states can help identify structural intermediates under native conditions. Protein structural dynamics can be studied by time-resolved crystallography (TRC) and ultrafast transient spectroscopic methods. Here, the authors perform electronic and vibrational transient absorption measurements to characterise the full photocycle of Photoactive Yellow Protein (PYP) both in the crystalline and solution state and find that the photocycle kinetics and structural intermediates of PYP deviate in the crystalline state, which must be taken into consideration when planning TRC experiments.
Collapse
Affiliation(s)
- Patrick E Konold
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Enis Arik
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jos C Arents
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
5
|
Mix LT, Hara M, Rathod R, Kumauchi M, Hoff WD, Larsen DS. Noncanonical Photocycle Initiation Dynamics of the Photoactive Yellow Protein (PYP) Domain of the PYP-Phytochrome-Related (Ppr) Photoreceptor. J Phys Chem Lett 2016; 7:5212-5218. [PMID: 27973895 DOI: 10.1021/acs.jpclett.6b02253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The photoactive yellow protein (PYP) from Halorhodospira halophila (Hhal) is a bacterial photoreceptor and model system for exploring functional protein dynamics. We report ultrafast spectroscopy experiments that probe photocycle initiation dynamics in the PYP domain from the multidomain PYP-phytochrome-related photoreceptor from Rhodospirillum centenum (Rcen). As with Hhal PYP, Rcen PYP exhibits similar excited-state dynamics; in contrast, Rcen PYP exhibits altered photoproduct ground-state dynamics in which the primary I0 intermediate as observed in Hhal PYP is absent. This property is attributed to a tighter, more sterically constrained binding pocket around the p-coumaric acid chromophore due to a change in the Rcen PYP protein structure that places Phe98 instead of Met100 in contact with the chromophore. Hence, the I0 state is not a necessary step for the initiation of productive PYP photocycles and the ubiquitously studied Hhal PYP may not be representative of the broader PYP family of photodynamics.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Rachana Rathod
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
6
|
Mix LT, Kirpich J, Kumauchi M, Ren J, Vengris M, Hoff WD, Larsen DS. Bifurcation in the Ultrafast Dynamics of the Photoactive Yellow Proteins from Leptospira biflexa and Halorhodospira halophila. Biochemistry 2016; 55:6138-6149. [DOI: 10.1021/acs.biochem.6b00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L. Tyler Mix
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Julia Kirpich
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jie Ren
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Mikas Vengris
- Faculty
of Physics, Laser Research Centre, Vilnius University, Sauletekio
10, LT-10233 Vilnius, Lithuania
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S. Larsen
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Yang D, Zheng R, Lv J. Hydrogen bonding and excited state properties of the photoexcited hydrogen-bonded (E
)-S
-(2-aminopropyl) 3-(4-hydroxyphenyl)prop-2-enethioate complexes. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dapeng Yang
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| | - Rui Zheng
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| | - Jian Lv
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| |
Collapse
|
8
|
Cho HS, Schotte F, Dashdorj N, Kyndt J, Henning R, Anfinrud PA. Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 2016; 138:8815-23. [PMID: 27305463 DOI: 10.1021/jacs.6b03565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The capacity to respond to environmental changes is crucial to an organism's survival. Halorhodospira halophila is a photosynthetic bacterium that swims away from blue light, presumably in an effort to evade photons energetic enough to be genetically harmful. The protein responsible for this response is believed to be photoactive yellow protein (PYP), whose chromophore photoisomerizes from trans to cis in the presence of blue light. We investigated the complete PYP photocycle by acquiring time-resolved small and wide-angle X-ray scattering patterns (SAXS/WAXS) over 10 decades of time spanning from 100 ps to 1 s. Using a sequential model, global analysis of the time-dependent scattering differences recovered four intermediates (pR0/pR1, pR2, pB0, pB1), the first three of which can be assigned to prior time-resolved crystal structures. The 1.8 ms pB0 to pB1 transition produces the PYP signaling state, whose radius of gyration (Rg = 16.6 Å) is significantly larger than that for the ground state (Rg = 14.7 Å) and is therefore inaccessible to time-resolved protein crystallography. The shape of the signaling state, reconstructed using GASBOR, is highly anisotropic and entails significant elongation of the long axis of the protein. This structural change is consistent with unfolding of the 25 residue N-terminal domain, which exposes the β-scaffold of this sensory protein to a potential binding partner. This mechanistically detailed description of the complete PYP photocycle, made possible by time-resolved crystal and solution studies, provides a framework for understanding signal transduction in proteins and for assessing and validating theoretical/computational approaches in protein biophysics.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Naranbaatar Dashdorj
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - John Kyndt
- College of Science and Technology, Bellevue University , Bellevue, Nebraska 68005, United States
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago , Chicago, Illinois 60637, United States
| | - Philip A Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Zhu J, Vreede J, Hospes M, Arents J, Kennis JTM, van Stokkum IHM, Hellingwerf KJ, Groot ML. Short Hydrogen Bonds and Negative Charge in Photoactive Yellow Protein Promote Fast Isomerization but not High Quantum Yield. J Phys Chem B 2014; 119:2372-83. [DOI: 10.1021/jp506785q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingyi Zhu
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Marie Louise Groot
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1. Biochemistry 2014; 53:4601-11. [PMID: 24940993 PMCID: PMC4184438 DOI: 10.1021/bi5005359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Femtosecond
photodynamics of the Pfr form of the red/far-red
phytochrome N-terminal PAS-GAF-PHY photosensory core module of the
cyanobacterial phytochrome Cph1 (termed Cph1Δ) from Synechocystis were resolved with visible broadband transient
absorption spectroscopy. Multiphasic generation dynamics via global
target analysis revealed parallel evolution of two pathways with distinct
excited- and ground-state kinetics. These measurements resolved two
subpopulations: a majority subpopulation with fast excited-state decay
and slower ground-state dynamics, corresponding to previous descriptions
of Pfr dynamics, and a minority subpopulation with slower
excited-state decay and faster ground-state primary dynamics. Both
excited-state subpopulations generated the isomerized, red-shifted
Lumi-Ff photoproduct (715 nm); subsequent ground-state
evolution to a blue-shifted Meta-Fr population (635 nm)
proceeded on 3 ps and 1.5 ns time scales for the two subpopulations.
Meta-Fr was spectrally similar to a recently described
photoinactive fluorescent subpopulation of Pr (FluorPr). Thus, the reverse Pfr to Pr photoconversion of Cph1Δ involves minor structural deformation
of Meta-Fr to generate the fluorescent, photochemically
refractory form of Pr, with slower subsequent equilibration
with the photoactive Pr subpopulation (PhotoPr).
Collapse
Affiliation(s)
- Peter W Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
11
|
Mendonça L, Hache F, Changenet-Barret P, Plaza P, Chosrowjan H, Taniguchi S, Imamoto Y. Ultrafast Carbonyl Motion of the Photoactive Yellow Protein Chromophore Probed by Femtosecond Circular Dichroism. J Am Chem Soc 2013; 135:14637-43. [DOI: 10.1021/ja404503q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucille Mendonça
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | - François Hache
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique/CNRS/INSERM, 91128 Palaiseau cedex, France
| | | | - Pascal Plaza
- Ecole Normale Supérieure,
Département de Chimie, UMR 8640 CNRS-ENS-UPMC, 24 rue Lhomond,
75005 Paris, France
| | - Haik Chosrowjan
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Taniguchi
- Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Imamoto
- Department
of Biophysics, Graduate School of Sciences, Kyoto University, Kyoto 6068502, Japan
| |
Collapse
|
12
|
Preketes NK, Biggs JD, Ren H, Andricioaei I, Mukamel S. Simulations of Two-dimensional Infrared and Stimulated Resonance Raman Spectra of Photoactive Yellow Protein. Chem Phys 2013; 422. [PMID: 24244064 DOI: 10.1016/j.chemphys.2012.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present simulations of one and two-dimensional infrared (2DIR) and stimulated resonance Raman (SRR) spectra of the dark state (pG) and early red-shifted intermediate (pR) of photoactive yellow protein (PYP). Shifts in the amide I and Glu46 COOH stretching bands distinguish between pG and pR in the IR absorption and 2DIR spectra. The one-dimensional SRR spectra are similar to the spontaneous RR spectra. The two-dimensional SRR spectra show large changes in cross peaks involving the C=O stretch of the two species and are more sensitive to the chromophore structure than 2DIR spectra.
Collapse
|
13
|
Zhu J, Paparelli L, Hospes M, Arents J, Kennis JTM, van Stokkum IHM, Hellingwerf KJ, Groot ML. Photoionization and Electron Radical Recombination Dynamics in Photoactive Yellow Protein Investigated by Ultrafast Spectroscopy in the Visible and Near-Infrared Spectral Region. J Phys Chem B 2013; 117:11042-8. [DOI: 10.1021/jp311906f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingyi Zhu
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Laura Paparelli
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Marijke Hospes
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - Jos Arents
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Klaas J. Hellingwerf
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - Marie Louise Groot
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zhu J, Paparelli L, Hospes M, Arents J, Hellingwerf K, Kennis JT, van Stokkum IH, Louise Groot M. Ultrafast geminate electron-radical recombination dynamics in photoactive yellow protein. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|