1
|
Cheeseman JR, Frisch MJ, Keiderling TA. Increased accuracy of vibrational circular dichroism calculations for isotopically labeled helical peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124097. [PMID: 38457873 DOI: 10.1016/j.saa.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Vibrational circular dichroism (VCD) spectra have been computed with qualitatively correct sign patterns for α-helical peptides using various methods, ranging from empirical models to ab initio quantum mechanical computations. However, some details, such as deuteration effects and isotope substitution shifts and sign patterns for the resultant amide I' band shape, have remained a predictive challenge. Fully optimized computations for a 25-residue Ala-rich peptide, including implicit solvent corrections and explicit side chains that experimentally stabilize these model helical peptides in water, have been carried out using density functional theory (DFT). These fully minimized structures show minor changes in the (ϕ,ψ) torsions at the termini and yield an extra negative band to the low energy side of the characteristic amide I' couplet VCD, in agreement with experiments. Additionally, these calculations give the right sign and relative intensity patterns, as compared to experimental results, for several 13C=O substituted variants. The differences from previously reported computations that used ideal helical structures and vacuum conditions imply that inclusion of distorted termini and solvent effects can have an impact on the final detailed spectral patterns. Inclusion of side chains in these calculations had very little effect on the computed amide I' IR and VCD. Tests of constrained geometries, varying dielectric, and different functionals indicate that each can affect the band shapes, particularly for the 12C=O components, but these aspects do not fully explain the difference from previous spectral simulations. Inclusion of long-range amide coupling, as obtained from DFT computation of the full structure, or transfer of parameters from a somewhat longer peptide model, rather than shorter model, seems to be more important for the final detailed band shape under isotopic substitution. However, these corrections can also induce other changes, suggesting that previously reported, limited calculations may have been qualitatively useful due to a balance of errors. This may also explain the success of simple empirical IR models.
Collapse
Affiliation(s)
- James R Cheeseman
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, CT 06492, USA
| | - Timothy A Keiderling
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Romei M, von Krusenstiern EV, Ridings ST, King RN, Fortier JC, McKeon CA, Nichols KM, Charkoudian LK, Londergan CH. Frequency Changes in Terminal Alkynes Provide Strong, Sensitive, and Solvatochromic Raman Probes of Biochemical Environments. J Phys Chem B 2023; 127:85-94. [PMID: 36538691 PMCID: PMC9841980 DOI: 10.1021/acs.jpcb.2c06176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Indexed: 12/24/2022]
Abstract
The C≡C stretching frequencies of terminal alkynes appear in the "clear" window of vibrational spectra, so they are attractive and increasingly popular as site-specific probes in complicated biological systems like proteins, cells, and tissues. In this work, we collected infrared (IR) absorption and Raman scattering spectra of model compounds, artificial amino acids, and model proteins that contain terminal alkyne groups, and we used our results to draw conclusions about the signal strength and sensitivity to the local environment of both aliphatic and aromatic terminal alkyne C≡C stretching bands. While the IR bands of alkynyl model compounds displayed surprisingly broad solvatochromism, their absorptions were weak enough that alkynes can be ruled out as effective IR probes. The same solvatochromism was observed in model compounds' Raman spectra, and comparisons to published empirical solvent scales (including a linear regression against four meta-aggregated solvent parameters) suggested that the alkyne C≡C stretching frequency mainly reports on local electronic interactions (i.e., short-range electron donor-acceptor interactions) with solvent molecules and neighboring functional groups. The strong solvatochromism observed here for alkyne stretching bands introduces an important consideration for Raman imaging studies based on these signals. Raman signals for alkynes (especially those that are π-conjugated) can be exceptionally strong and should permit alkynyl Raman signals to function as probes at very low concentrations, as compared to other widely used vibrational probe groups like azides and nitriles. We incorporated homopropargyl glycine into a transmembrane helical peptide via peptide synthesis, and we installed p-ethynylphenylalanine into the interior of the Escherichia coli fatty acid acyl carrier protein using a genetic code expansion technique. The Raman spectra from each of these test systems indicate that alkynyl C≡C bands can act as effective and unique probes of their local biomolecular environments. We provide guidance for the best possible future uses of alkynes as solvatochromic Raman probes, and while empirical explanations of the alkyne solvatochromism are offered, open questions about its physical basis are enunciated.
Collapse
Affiliation(s)
- Matthew
G. Romei
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Eliana V. von Krusenstiern
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Stephen T. Ridings
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Renee N. King
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Julia C. Fortier
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Caroline A. McKeon
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Krysta M. Nichols
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Louise K. Charkoudian
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
3
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
4
|
Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments. Molecules 2018; 23:molecules23092404. [PMID: 30235902 PMCID: PMC6225159 DOI: 10.3390/molecules23092404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/25/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023] Open
Abstract
Vibrational circular dichroism (VCD) is a widely used standard method for determination of absolute stereochemistry, and somewhat less so for biomolecule characterization and following dynamic processes. Over the last few decades, different VCD instrument designs have developed for various purposes, and reliable commercial instrumentation is now available. This review will briefly survey historical and currently used instrument designs and describe some aspects of more recently reported developments. An important factor in applying VCD to conformational studies is theoretical modeling of spectra for various structures, techniques for which are briefly surveyed.
Collapse
|
5
|
Keiderling TA, Lakhani A. Mini review: Instrumentation for vibrational circular dichroism spectroscopy, still a role for dispersive instruments. Chirality 2018; 30:238-253. [PMID: 29293282 DOI: 10.1002/chir.22799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/30/2023]
Abstract
Vibrational circular dichroism (VCD) has become a standard method for determination of absolute stereochemistry, particularly now that reliable commercial instrumentation has become available. These instruments use a now well-documented Fourier transform infrared-based approach to measure VCD that has virtually displaced initial dispersive infrared-based designs. Nonetheless, many papers have appeared reporting dispersive VCD data, especially for biopolymers. Instrumentation designed with these original methods, particularly after more recent updates optimizing performance in selected spectral regions, has been shown still to have advantages for specific applications. This article presents a mini-review of dispersive VCD instrument designs and includes sample spectra obtained for various biopolymer (particularly peptide) samples. Complementary reviews of Fourier transform-VCD designs are broadly available.
Collapse
Affiliation(s)
- Timothy A Keiderling
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ahmed Lakhani
- Department of Biophysical Chemistry and Mathematics, Calumet College of St. Joseph, Whiting, Indiana, USA
| |
Collapse
|
6
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
7
|
Keiderling TA. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides. Chirality 2017; 29:763-773. [DOI: 10.1002/chir.22749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/07/2022]
|
8
|
Jungwirth J, Šebestík J, Šafařík M, Kapitán J, Bouř P. Quantitative Determination of Ala-Ala Conformer Ratios in Solution by Decomposition of Raman Optical Activity Spectra. J Phys Chem B 2017; 121:8956-8964. [DOI: 10.1021/acs.jpcb.7b07154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakub Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Martin Šafařík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Josef Kapitán
- Department
of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
9
|
Tomsett M, Maffucci I, Le Bailly BAF, Byrne L, Bijvoets SM, Lizio MG, Raftery J, Butts CP, Webb SJ, Contini A, Clayden J. A tendril perversion in a helical oligomer: trapping and characterizing a mobile screw-sense reversal. Chem Sci 2017; 8:3007-3018. [PMID: 28451368 PMCID: PMC5380885 DOI: 10.1039/c6sc05474a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
Abstract
Helical oligomers of achiral monomers adopt domains of uniform screw sense, which are occasionally interrupted by screw-sense reversals. These rare, elusive, and fast-moving features have eluded detailed characterization. We now describe the structure and habits of a screw-sense reversal trapped within a fragment of a helical oligoamide foldamer of the achiral quaternary amino acid 2-aminoisobutyric acid (Aib). The reversal was enforced by compelling the amide oligomer to adopt a right-handed screw sense at one end and a left-handed screw sense at the other. The trapped reversal was characterized by X-ray crystallography, and its dynamic properties were monitored by NMR and circular dichroism, and modelled computationally. Raman spectroscopy indicated that a predominantly helical architecture was maintained despite the reversal. NMR and computational results indicated a stepwise shift from one screw sense to another on moving along the helical chain, indicating that in solution the reversal is not localised at a specific location, but is free to migrate across a number of residues. Analogous unconstrained screw-sense reversals that are free to move within a helical structure are likely to provide the mechanism by which comparable helical polymers and foldamers undergo screw-sense inversion.
Collapse
Affiliation(s)
- Michael Tomsett
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Irene Maffucci
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini" , Università degli Studi di Milano , Via Venezian , 21 20133 Milano , Italy
| | - Bryden A F Le Bailly
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Liam Byrne
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| | - Stefan M Bijvoets
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| | - M Giovanna Lizio
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - James Raftery
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| | - Craig P Butts
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Simon J Webb
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini" , Università degli Studi di Milano , Via Venezian , 21 20133 Milano , Italy
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| |
Collapse
|
10
|
Vacogne CD, Schopferer M, Schlaad H. Physical Gelation of α-Helical Copolypeptides. Biomacromolecules 2016; 17:2384-91. [DOI: 10.1021/acs.biomac.6b00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte D. Vacogne
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14424 Potsdam, Germany
| | | | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Reppert M, Tokmakoff A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu Rev Phys Chem 2016; 67:359-86. [DOI: 10.1146/annurev-physchem-040215-112055] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
12
|
Li J, Wang Y, Chen J, Liu Z, Bax A, Yao L. Observation of α-Helical Hydrogen-Bond Cooperativity in an Intact Protein. J Am Chem Soc 2016; 138:1824-7. [PMID: 26853186 PMCID: PMC5575832 DOI: 10.1021/jacs.5b13140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence and extent of hydrogen-bonding (H-bonding) cooperativity in proteins remains a fundamental question, which in the past has been studied extensively, mostly by infrared and fluorescence measurements on model peptides. We demonstrate that such cooperativity can be studied in an intact protein by hydrogen/deuterium exchange NMR spectroscopy. The method is based on the fact that substitution of NH by ND in a backbone amide group slightly weakens the N-H···O═C hydrogen bond. Our results show that such substitution at position i in an α-helix impacts the (1)H and (15)N chemical shifts of the amide sites of residues i - 3 to i + 3. Quantum mechanical calculations indicate that the upfield shifts of (1)H and (15)N resonances at site i, observed upon H/D exchanges at sites i - 3, i + 1, i + 2, and i + 3, correspond to a decrease of the ith backbone amide electric dipole moment, which weakens its H-bonding and long-range electrostatic interactions with other backbone amides in the α-helix. These results provide new quantitative insights into the cooperativity of H-bonding in protein α-helices.
Collapse
Affiliation(s)
- Jingwen Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266061, China
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| | - Yefei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266061, China
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| | - Jingfei Chen
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266061, China
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| | - Zhijun Liu
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| | - Lishan Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao, 266061, China
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| |
Collapse
|
13
|
Novotná P, Urbanová M. A Solid Phase Vibrational Circular Dichroism Study of Polypeptide-Surfactant Interaction. Chirality 2015; 27:965-72. [DOI: 10.1002/chir.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Pavlína Novotná
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements; University of Chemistry and Technology; Prague Czech Republic
| |
Collapse
|
14
|
Domingos SR, Huerta-Viga A, Baij L, Amirjalayer S, Dunnebier DAE, Walters AJC, Finger M, Nafie LA, de Bruin B, Buma WJ, Woutersen S. Amplified Vibrational Circular Dichroism as a Probe of Local Biomolecular Structure. J Am Chem Soc 2014; 136:3530-5. [DOI: 10.1021/ja411405s] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sérgio R. Domingos
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Adriana Huerta-Viga
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lambert Baij
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dorien A. E. Dunnebier
- Homogeneous
and Supramolecular Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Annemarie J. C. Walters
- Homogeneous
and Supramolecular Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Markus Finger
- Homogeneous
and Supramolecular Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Institut
für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrabe
4, 37077 Göttingen, Germany
| | - Laurence A. Nafie
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Bas de Bruin
- Homogeneous
and Supramolecular Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wybren Jan Buma
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Molecular
Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Zeko T, Hannigan SF, Jacisin T, Guberman-Pfeffer MJ, Falcone ER, Guildford MJ, Szabo C, Cole KE, Placido J, Daly E, Kubasik MA. FT-IR Spectroscopy and Density Functional Theory Calculations of 13C Isotopologues of the Helical Peptide Z-Aib6-OtBu. J Phys Chem B 2013; 118:58-68. [DOI: 10.1021/jp408818g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Timothy Zeko
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Steven F. Hannigan
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Timothy Jacisin
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | | | - Eric R. Falcone
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Melissa J. Guildford
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Christopher Szabo
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Kathryn E. Cole
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Jessica Placido
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Erin Daly
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Matthew A. Kubasik
- Department of Chemistry and
Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| |
Collapse
|
16
|
Woys AM, Almeida AM, Wang L, Chiu CC, McGovern M, de Pablo JJ, Skinner JL, Gellman SH, Zanni MT. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. J Am Chem Soc 2012; 134:19118-28. [PMID: 23113791 DOI: 10.1021/ja3074962] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel β-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of β-sheet containing proteins and protein assemblies, such as amyloid fibers.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dzwolak W, Kalinowski J, Johannessen C, Babenko V, Zhang G, Keiderling TA. On the DMSO-Dissolved State of Insulin: A Vibrational Spectroscopic Study of Structural Disorder. J Phys Chem B 2012; 116:11863-71. [DOI: 10.1021/jp3062674] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wojciech Dzwolak
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093
Warsaw, Poland
| | - Jarosław Kalinowski
- Institute of High
Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Christian Johannessen
- Manchester Interdisciplinary
Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Viktoria Babenko
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093
Warsaw, Poland
| | - Ge Zhang
- Department of Chemistry, University of Illinois at Chicago, 845
West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, United
States
| | - Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago, 845
West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, United
States
| |
Collapse
|
18
|
Hudecová J, Horníček J, Buděšínský M, Šebestík J, Šafařík M, Zhang G, Keiderling TA, Bouř P. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment. Chemphyschem 2012; 13:2748-60. [PMID: 22706803 DOI: 10.1002/cphc.201200201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/27/2012] [Indexed: 11/08/2022]
Abstract
The tryptophan (Trp) aromatic residue in chiral matrices often exhibits a large optical activity and thus provides valuable structural information. However, it can also obscure spectral contributions from other peptide parts. To better understand the induced chirality, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) spectra of Trp-containing cyclic dipeptides c-(Trp-X) (where X = Gly, Ala, Trp, Leu, nLeu, and Pro) are analyzed on the basis of experimental spectra and density functional theory (DFT) computations. The results provide valuable insight into the molecular conformational and spectroscopic behavior of Trp. Whereas the ECD is dominated by Trp π-π* transitions, VCD is dominated by the amide modes, well separated from minor Trp contributions. The ROA signal is the most complex. However, an ROA marker band at 1554 cm(-1) indicates the local χ(2) angle value in this residue, in accordance with previous theoretical predictions. The spectra and computations also indicate that the peptide ring is nonplanar, with a shallow potential so that the nonplanarity is primarily induced by the side chains. Dispersion-corrected DFT calculations provide better results than plain DFT, but comparison with experiment suggests that they overestimate the stability of the folded conformers. Molecular dynamics simulations and NMR results also confirm a limited accuracy of the dispersion-DFT model in nonaqueous solvents. Combination of chiral spectroscopies with theoretical analysis thus significantly enhances the information that can be obtained from the induced chirality of the Trp aromatic residue.
Collapse
Affiliation(s)
- Jana Hudecová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shanmugam G, Polavarapu PL, Láng E, Majer Z. Conformational analysis of amyloid precursor protein fragment containing amino acids 667–676, and the effect of d-Asp and iso-Asp substitution at Asp672 residue. J Struct Biol 2012; 177:621-9. [DOI: 10.1016/j.jsb.2012.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
|
20
|
Jacob CR. Theoretical Study of the Raman Optical Activity Spectra of 310-Helical Polypeptides. Chemphyschem 2011; 12:3291-306. [DOI: 10.1002/cphc.201100593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Indexed: 11/06/2022]
|