1
|
Cornet J, Coulonges N, Pezeshkian W, Penissat-Mahaut M, Desgrez-Dautet H, Marrink SJ, Destainville N, Chavent M, Manghi M. There and back again: bridging meso- and nano-scales to understand lipid vesicle patterning. SOFT MATTER 2024; 20:4998-5013. [PMID: 38884641 DOI: 10.1039/d4sm00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We describe a complete methodology to bridge the scales between nanoscale molecular dynamics and (micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase separation, in which curving molecular species are furthermore embedded. To go from the molecular to the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with the physical timescales at stake at the mesoscale. Simulating the as-obtained mesoscale system enables us to equilibrate the long wavelengths of the vesicles of interest, up to the vesicle size. Conversely, we then backmap from the meso- to the nano-scale, which enables us to equilibrate in turn the short wavelengths down to the molecular length-scales. By applying our approach to the specific situation of patterning a vesicle membrane, we show that macroscopic membranes can thus be equilibrated at all length-scales in achievable computational time offering an original strategy to address the fundamental challenge of timescale in simulations of large bio-membrane systems.
Collapse
Affiliation(s)
- Julie Cornet
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| | - Nelly Coulonges
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Maël Penissat-Mahaut
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Hermes Desgrez-Dautet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
2
|
Kondrashov OV, Akimov SA. A Mechanism of Double-Membrane Vesicle Formation from Liquid-Ordered/Liquid-Disordered Phase Separated Spherical Membrane. MEMBRANES 2022; 13:25. [PMID: 36676832 PMCID: PMC9862188 DOI: 10.3390/membranes13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Genome replication of coronaviruses takes place in specific cellular compartments, in so-called double-membrane vesicles (DMVs), formed from the endoplasmic reticulum (ER). An intensive production of DMVs is induced by non-structural viral proteins. Here, we proposed a possible mechanism of the DMV formation from ER-derived spherical vesicles where liquid-ordered and liquid-disordered lipid phases coexist. These vesicles are supposed to divide into two homogeneous liquid-ordered and liquid-disordered vesicles. The formation of two spherical vesicles constituting DMV requires a mechanical work to be performed. We considered the excess energy of the boundary between the coexisting lipid phases as the main driving force behind the division of the initial vesicle. Explicitly accounting for the energy of elastic deformations and the interphase boundary energy, we analyzed a range of physical parameters where the DMV formation is possible. We concluded that this process can principally take place in a very narrow range of system parameters. The most probable diameter of DMVs formed according to the proposed mechanism appeared to be approximately 220 nm, in an agreement with the average diameter of DMVs observed in vivo. Our consideration predicts the DMV size to be strongly limited from above. The developed analysis can be utilized for the production of DMVs in model systems.
Collapse
|
3
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
5
|
Saitov A, Kalutsky MA, Galimzyanov TR, Glasnov T, Horner A, Akimov SA, Pohl P. Determinants of Lipid Domain Size. Int J Mol Sci 2022; 23:ijms23073502. [PMID: 35408861 PMCID: PMC8998648 DOI: 10.3390/ijms23073502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.
Collapse
Affiliation(s)
- Ali Saitov
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Maksim A. Kalutsky
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Toma Glasnov
- Institute of Chemistry, University of Graz, 8010 Graz, Austria;
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
- Correspondence:
| |
Collapse
|
6
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
7
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|
8
|
Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophys J 2019; 117:1215-1223. [PMID: 31542224 DOI: 10.1016/j.bpj.2019.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Gangliosides (GMs) form an important class of lipids found in the outer leaflet of the plasma membrane. Typically, they colocalize with cholesterol and sphingomyelin in ordered membrane domains. However, detailed understanding of the lateral organization of GM-rich membranes is still lacking. To gain molecular insight, we performed molecular dynamics simulations of GMs in model membranes composed of coexisting liquid-ordered and liquid-disordered domains. We found that GMs indeed have a preference to partition into the ordered domains. At higher concentrations (>10 mol %), we observed a destabilizing effect of GMs on the phase coexistence. Further simulations with modified GMs show that the structure of the GM headgroup affects the phase separation, whereas the nature of the tail determines the preferential location. Together, our findings provide a molecular basis to understand the lateral organization of GM-rich membranes.
Collapse
|
9
|
Strakova K, Soleimanpour S, Diez-Castellnou M, Sakai N, Matile S. Ganglioside-Selective Mechanosensitive Fluorescent Membrane Probes. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Marta Diez-Castellnou
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
10
|
Rodi PM, Maggio B, Bagatolli LA. Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:544-555. [PMID: 29106974 DOI: 10.1016/j.bbamem.2017.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
We compared the lateral structure of giant unilamellar vesicles (GUVs) composed of three pseudo binary mixtures of different glycosphingolipid (GSL), i.e. sulfatide, asialo-GM1 or GM1, with POPC. These sphingolipids possess similar hydrophobic residues but differ in the size and charge of their polar head group. Fluorescence microscopy experiments using LAURDAN and DiIC18 show coexistence of micron sized domains in a molar fraction range that depends on the nature of the GSLs. In all cases, experiments with LAURDAN show that the membrane lateral structure resembles the coexistence of solid ordered and liquid disordered phases. Notably, the overall extent of hydration measured by LAURDAN between the solid ordered and liquid disordered membrane regions show marked similarities and are independent of the size of the GSL polar head group. In addition, the maximum amount of GSL incorporated in the POPC bilayer exhibits a strong dependence on the size of the GSL polar head group following the order sulfatide>asialo-GM1>GM1. This observation is in full harmony with previous experiments and theoretical predictions for mixtures of these GSL with glycerophospholipids. Finally, compared with previous results reported in GUVs composed of mixtures of POPC with the sphingolipids cerebroside and ceramide, we observed distinctive curvature effects at particular molar fraction regimes in the different mixtures. This suggests a pronounced effect of these GSL on the spontaneous curvature of the bilayer. This observation may be relevant in a biological context, particularly in connection with the highly curved structures found in neural cells.
Collapse
Affiliation(s)
- Pablo M Rodi
- MEMPHYS - Center for Biomembrane Physics, Denmark; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Bruno Maggio
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, Denmark; Yachay EP/Yachay Tech University, San Miguel de Urcuqui, Ecuador.
| |
Collapse
|
11
|
Patel DS, Park S, Wu EL, Yeom MS, Widmalm G, Klauda JB, Im W. Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature. Biophys J 2017; 111:1987-1999. [PMID: 27806280 DOI: 10.1016/j.bpj.2016.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and form a large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Soohyung Park
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Emilia L Wu
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information, Daejeon, Korea
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland; Biophysics Program, University of Maryland, College Park, Maryland.
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
12
|
Galimzyanov TR, Lyushnyak AS, Aleksandrova VV, Shilova LA, Mikhalyov II, Molotkovskaya IM, Akimov SA, Batishchev OV. Line Activity of Ganglioside GM1 Regulates the Raft Size Distribution in a Cholesterol-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3517-3524. [PMID: 28324651 DOI: 10.1021/acs.langmuir.7b00404] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liquid-ordered lipid domains, also called rafts, are assumed to be important players in different cellular processes, mainly signal transduction and membrane trafficking. They are thicker than the disordered part of the membrane and are thought to form to compensate for the hydrophobic mismatch between transmembrane proteins and the lipid environment. Despite the existence of such structures in vivo still being an open question, they are observed in model systems of multicomponent lipid bilayers. Moreover, the predictions obtained from model experiments allow the explanation of different physiological processes possibly involving rafts. Here we present the results of the study of the regulation of raft size distribution by ganglioside GM1. Combining atomic force microscopy with theoretical considerations based on the theory of membrane elasticity, we predict that this glycolipid should change the line tension of raft boundaries in two different ways, mainly depending on the cholesterol content. These results explain the shedding of gangliosides from the surface of tumor cells and the following ganglioside-induced apoptosis of T-lymphocytes in a raft-dependent manner. Moreover, the generality of the model allows the prediction of the line activity of different membrane components based on their molecular geometry.
Collapse
Affiliation(s)
- T R Galimzyanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - A S Lyushnyak
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| | - V V Aleksandrova
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - L A Shilova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| | - I I Mikhalyov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Str., Moscow, 117997 Russia
| | - I M Molotkovskaya
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Str., Moscow, 117997 Russia
| | - S A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - O V Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| |
Collapse
|
13
|
Staneva G, Osipenko DS, Galimzyanov TR, Pavlov KV, Akimov SA. Metabolic Precursor of Cholesterol Causes Formation of Chained Aggregates of Liquid-Ordered Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1591-1600. [PMID: 26783730 DOI: 10.1021/acs.langmuir.5b03990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
7-Dehydrocholesterol, an immediate metabolic predecessor of cholesterol, can accumulate in tissues due to some metabolic abnormalities, causing an array of symptoms known as Smith-Lemli-Opitz syndrome. Enrichment of cellular membranes with 7-dehydrocholesterol interferes with normal cell-signaling processes, which involve interaction between rafts and formation of the so-called signaling platforms. In model membranes, cholesterol-based ordered domains usually merge upon contact. According to our experimental data, ordered domains in the model systems where cholesterol is substituted for 7-dehydrocholesterol never merge on the time scale of the experiment, but clusterize into necklace-like aggregates. We attribute such different dynamical behavior to altered properties of the domain boundary. In the framework of thickness mismatch model, we analyzed changes of interaction energy profiles of two approaching domains caused by substitution of cholesterol by 7-dehydrocholesterol. The energy barrier for domain merger is shown to increase notably, with simultaneous appearance of another distinct local energy minimum. Such energy profile is in perfect qualitative agreement with the experimental observations. The observed change of domain dynamics can impair proper interaction between cellular rafts underlying pathologies associated with deviations in cholesterol metabolism.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , 21 Academic G. Bonchev Str., Sofia 1113, Bulgaria
| | - Denis S Osipenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
- National University of Science and Technology "MISiS" , 4 Leninskiy prospect, Moscow 119049, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
- National University of Science and Technology "MISiS" , 4 Leninskiy prospect, Moscow 119049, Russia
| |
Collapse
|
14
|
Eich C, Manzo C, de Keijzer S, Bakker GJ, Reinieren-Beeren I, García-Parajo MF, Cambi A. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci Rep 2016; 6:20693. [PMID: 26869100 PMCID: PMC4751618 DOI: 10.1038/srep20693] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion.
Collapse
Affiliation(s)
- Christina Eich
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Sandra de Keijzer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Maria F García-Parajo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Alessandra Cambi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
15
|
Uptake of raft components into amyloid β-peptide aggregates and membrane damage. Anal Biochem 2015; 481:18-26. [PMID: 25908557 DOI: 10.1016/j.ab.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/13/2015] [Accepted: 04/12/2015] [Indexed: 01/26/2023]
Abstract
Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure.
Collapse
|
16
|
Huang W, Yu X, Li D. Adsorption removal of Congo red over flower-like porous microspheres derived from Ni/Al layered double hydroxide. RSC Adv 2015. [DOI: 10.1039/c5ra13922h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flower-like porous microspheres of Ni/Al mixed oxide, consisting of a hollow core and mesoporous shell, can achieve a superior adsorption and regeneration capacity toward Congo red.
Collapse
Affiliation(s)
- Weiya Huang
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
- Department of Materials Science and Engineering
| | - Xiang Yu
- Department of Chemistry
- Jinan University
- Guangzhou
- China
| | - Dan Li
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| |
Collapse
|
17
|
Puff N, Watanabe C, Seigneuret M, Angelova MI, Staneva G. Lo/Ld phase coexistence modulation induced by GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2105-14. [DOI: 10.1016/j.bbamem.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/31/2023]
|
18
|
The GM1 Ganglioside Forms GM1-Rich Gel Phase Microdomains within Lipid Rafts. COATINGS 2014. [DOI: 10.3390/coatings4030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Gu C, Gu H, Lang M. Molecular Simulation to Predict Miscibility and Phase Separation Behavior of Chitosan/Poly(ϵ-caprolactone) Binary Blends: A Comparison with Experiments. MACROMOL THEOR SIMUL 2013. [DOI: 10.1002/mats.201300109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunhua Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Technology, State Key Laboratory of Bioreactor Engineering, School of Bioengineering; East China University of Science and Technology; Shanghai 200237 China
| | - Huiyan Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Technology, State Key Laboratory of Bioreactor Engineering, School of Bioengineering; East China University of Science and Technology; Shanghai 200237 China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Technology, State Key Laboratory of Bioreactor Engineering, School of Bioengineering; East China University of Science and Technology; Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
20
|
Armendariz KP, Dunn RC. Ganglioside influence on phospholipid films investigated with single molecule fluorescence measurements. J Phys Chem B 2013; 117:7959-66. [PMID: 23745772 DOI: 10.1021/jp405312a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single molecule fluorescence measurements are used to probe the effects of GM1 in DPPC monolayers. Langmuir-Blodgett films of GM1 and DPPC were doped with ~10(-8) mol % of the fluorescent lipid probe, BODIPY-PC, and transferred onto glass substrates at 23 mN/m. As shown previously, the individual orientation of each BODIPY-PC probe in the membrane can be measured using defocused polarized total internal reflection fluorescence microscopy, revealing changes in film properties at the molecular level. Here, BODIPY-PC tilt angle histograms are used to characterize the effects of GM1 in DPPC films from 0.05 to 100 mol % GM1. At high GM1 levels (>5 mol % GM1), trends in the single molecule measurements agree with previous bulk measurements showing the turnover from condensing to expanding influence of GM1 at 15-20 mol %, thus validating the single molecule approach. At biologically relevant, low concentrations of GM1 (<5 mol % GM1), where bulk fluorescence measurements are less informative, the single molecule measurements reveal a marked influence of GM1 on film properties. The addition of trace amounts of GM1 to DPPC films leads to an expansion of the film which continues to 0.10 mol % GM1, above which the trend reverses and the condensing effect previously noted is observed.
Collapse
Affiliation(s)
- Kevin P Armendariz
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
21
|
Matsubara T, Iijima K, Yamamoto N, Yanagisawa K, Sato T. Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid β-protein on synaptic plasma membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2258-2264. [PMID: 23294326 DOI: 10.1021/la3038999] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The deposition of amyloid β-protein (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We previously found that the ganglioside-enriched microdomains (ganglioside clusters) in presynaptic neuronal membranes play a key role in the initiation of the Aβ assembly process. However, not all ganglioside clusters accelerate Aβ assembly. In the present study, we directly observed a spherical Aβ in an atomic force microscopic study on the morphology of a reconstituted lipid bilayer composed of lipids that were extracted from a detergent-resistant membrane microdomain (DRM) fraction of synaptosomes prepared from aged mouse brain. The Aβ assembly was generated on a distinctive GM1 domain, which was characterized as the Aβ-sensitive ganglioside nanocluster (ASIGN). By using an artificial GM1 cluster-binding peptide, ASIGN was found to have a high density of GM1; therefore, there would be a critical density of GM1 in nanoclusters to induce Aβ binding and assembly. These results suggest that ganglioside-bound Aβ (GAβ), which acts as an endogenous seed for Aβ fibril formation in AD brains, is generated on ASIGN on synaptosomal membranes.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, Kouhoku-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
22
|
Sasahara K, Morigaki K, Shinya K. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure. Phys Chem Chem Phys 2013; 15:8929-39. [DOI: 10.1039/c3cp44517h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Staneva G, Puff N, Seigneuret M, Conjeaud H, Angelova MI. Segregative clustering of Lo and Ld membrane microdomains induced by local pH gradients in GM1-containing giant vesicles: a lipid model for cellular polarization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16327-37. [PMID: 23121205 DOI: 10.1021/la3031107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several cell polarization processes are coupled to local pH gradients at the membrane surface. We have investigated the involvement of a lipid-mediated effect in such coupling. The influence of lateral pH gradients along the membrane surface on lipid microdomain dynamics in giant unilamellar vesicles containing phosphatidylcholine, sphingomyelin, cholesterol, and the ganglioside GM1 was studied. Lo/Ld phase separation was generated by photosensitization. A lateral pH gradient was established along the external membrane surface by acid local microinjection. The gradient promotes the segregation of microdomains: Lo domains within an Ld phase move toward the higher pH side, whereas Ld domains within an Lo phase move toward the lower pH side. This results in a polarization of the vesicle membrane into Lo and Ld phases poles in the axis of the proton source. A secondary effect is inward tubulation in the Ld phase. None of these processes occurs without GM1 or with the analog asialo-GM1. These are therefore related to the acidic character of the GM1 headgroup. LAURDAN fluorescence experiments on large unilamellar vesicles indicated that, with GM1, an increase in lipid packing occurs with decreasing pH, attributed to the lowering of repulsion between GM1 molecules. Packing increase is much higher for Ld phase vesicles than for Lo phase vesicles. It is proposed that the driving forces for domain vectorial segregative clustering and vesicle polarization are related to such differences in packing variations with pH decrease between the Lo and Ld phases. Such pH-driven domain clustering might play a role in cellular membrane polarization processes in which local lateral pH gradients are known to be important, such as migrating cells and epithelial cells.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|