1
|
Wang X, Yan B, Li H, Yuan J, Guo J, Wang S, Dai P, Liu X. Reprogrammed IDO-Induced Immunosuppressive Microenvironment Synergizes with Immunogenic Magnetothermodynamics for Improved Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30671-30684. [PMID: 38843203 DOI: 10.1021/acsami.4c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Indoleamine 2,3-dioxygenase (IDO), highly expressed in hepatocellular carcinoma (HCC), plays a pivotal role in creating an immune-suppressive tumor microenvironment. Inhibiting IDO activity has emerged as a promising immunotherapeutic strategy; however, the delivery of IDO inhibitors to the tumor site is constrained, limiting their therapeutic efficacy. In this study, we developed a magnetic vortex nanodelivery system for the targeted delivery of the IDO inhibitor NLG919, integrated with magnetic hyperthermia therapy to reverse the immune-suppressive microenvironment of liver cancer and inhibit tumor growth. This system comprises thermoresponsive polyethylenimine-coated ferrimagnetic vortex-domain iron oxide nanorings (PI-FVIOs) loaded with NLG919 (NLG919/PI-FVIOs). Under thermal effects, NLG919 can be precisely released from the delivery system, counteracting IDO-mediated immune suppression and synergizing with NLG919/PI-FVIOs-mediated magnetothermodynamic (MTD) therapy-induced immunogenic cell death (ICD), resulting in effective HCC suppression. In vivo studies demonstrate that this combination therapy significantly inhibits tumor growth and metastasis by enhancing the accumulation of cytotoxic T lymphocytes and suppressing regulatory T cells within the tumor. Overall, our findings reveal that NLG919/PI-FVIOs can induce a potent antitumor immune response by disrupting the IDO pathway and activating the ICD, offering a promising therapeutic avenue for HCC treatment.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Animals
- Tumor Microenvironment/drug effects
- Mice
- Humans
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Hyperthermia, Induced
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/drug therapy
- Cell Line, Tumor
- Mice, Inbred BALB C
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Imidazoles
- Isoindoles
Collapse
Affiliation(s)
- Xun Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Shaanxi Lifegen Co., Ltd., Xi'an, Shaanxi 712000, China
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hugang Li
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianlan Yuan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingyi Guo
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Penggao Dai
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Shaanxi Lifegen Co., Ltd., Xi'an, Shaanxi 712000, China
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
2
|
Liu X, Zhang Y, Guo Y, Jiao W, Gao X, Lee WSV, Wang Y, Deng X, He Y, Jiao J, Zhang C, Hu G, Liang X, Fan H. Electromagnetic Field-Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100950. [PMID: 34279055 PMCID: PMC8456207 DOI: 10.1002/advs.202100950] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Indexed: 05/05/2023]
Abstract
Effective delivery of anticancer drugs into the nucleus for pharmacological action is impeded by a series of intratumoral transport barriers. Despite the significant potential of magnetic nanovehicles in electromagnetic field (EF)-activated drug delivery, modularizing a tandem magnetoresponsive activity in a one-nanoparticle system to meet different requirements at both tissue and cellular levels remain highly challenging. Herein, a strategy is described by employing sequential EF frequencies in inducing a succession of magnetoresponses in the magnetic nanovehicles that aims to realize cascaded tissue penetration and nuclear accumulation. This nanovehicle features ferrimagnetic vortex-domain iron oxide nanorings coated with a thermo-responsive polyethylenimine copolymer (PI/FVIOs). It is shown that the programmed cascading of low frequency (Lf)-EF-induced magnetophoresis and medium frequency (Mf)-EF-stimulated magneto-thermia can steer the Doxorubicin (DOX)-PI/FVIOs to the deep tissue and subsequently trigger intracellular burst release of DOX for successful nuclear entry. By programming the order of different EF frequencies, it is demonstrated that first-stage Lf-EF and subsequent Mf-EF operation enables DOX-PI/FVIOs to effectively deliver 86.2% drug into the nucleus in vivo. This nanodelivery system empowers potent antitumoral activity in various models of intractable tumors, including DOX-resistant MCF-7 breast cancer cells, triple-negative MDA-MB-231 breast cancer cells, and BxPC-3 pancreatic cancer cells with poor permeability.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaNo. 11, First North Road, ZhongguancunBeijing100190China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Yu Guo
- Department of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
| | - Wee Siang Vincent Lee
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117573
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Xia Deng
- School of Life Sciences and Electron Microscopy Center of Lanzhou UniversityLanzhou UniversityLanzhou730000China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Ju Jiao
- Department of Nuclear MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Ce Zhang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional MaterialsLaboratory of Optoelectronic Technology of Shaanxi ProvinceNational Center for International Research of Photoelectric Technology & Nanofunctional Materials and ApplicationInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXuefu Street No. 1Xi'an710127China
| | - Guoqing Hu
- Department of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaNo. 11, First North Road, ZhongguancunBeijing100190China
- University of Chinese Academy of SciencesNo.19(A) Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Haiming Fan
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| |
Collapse
|
3
|
Preparation and controlled properties of temperature/photo dual sensitive polymers by facile Ugi reaction. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Dai YX, Lv FN, Wang B, Chen Y. Thermoresponsive phenolic formaldehyde amines with strong intrinsic photoluminescence: Preparation, characterization and application as hardeners in waterborne epoxy resin formulations. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Cao G, Li G, Yang Q, Liu Z, Liu Z, Jiang J. LCST-Type Hyperbranched Poly(oligo(ethylene glycol) with Thermo- and CO 2 -Responsive Backbone. Macromol Rapid Commun 2018; 39:e1700684. [PMID: 29297595 DOI: 10.1002/marc.201700684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/16/2017] [Indexed: 12/30/2022]
Abstract
A novel hyperbranched lower critical solution temperature (LCST) polymer with sharp temperature and CO2 -responsive behaviors is presented in this study. The target polymer of hyperbranched poly(oligo(ethylene glycol) (HBPOEG) is constructed using POEG as the backbone and tertiary amines as branch points. Phase transition of HBPOEG in aqueous solution is investigated by heating and cooling the system; the results indicate that HBPOEG in aqueous solution has a concentration-dependent phase transition behavior with excellent repeatability. Moreover, LCST of HBPOEG can be tuned by bubbling CO2 into the solution, as the tertiary amines can be protonated and the solubility of the polymer would increase by bubbling CO2 into the system, leading to an increase of LCST of the polymer. Further bubbling N2 to remove CO2 can reversibly turn back the LCST to its original value. This backbone-based hyperbranched LCST polymer with both CO2 and temperature responsiveness can be applied in application areas like drug delivery, gene transfection, functional coatings, etc.
Collapse
Affiliation(s)
- Gaixia Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| | - Guo Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| | - Qi Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| | - Zhaotie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| | - Zhongwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| | - Jinqiang Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710062, P. R. China
| |
Collapse
|
6
|
Fang WC, Zhang R, Yao YF, Liu HJ, Chen Y. Specific thermoresponsive behaviours exhibited by optically active and inactive phenylalanine modified hyperbranched polyethylenimines in water. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1950-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhan C, Fu XB, Yao Y, Liu HJ, Chen Y. Stimuli-responsive hyperbranched poly(amidoamine)s integrated with thermal and pH sensitivity, reducible degradability and intrinsic photoluminescence. RSC Adv 2017. [DOI: 10.1039/c6ra27390d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimuli-responsive HPA-C4s integrated with thermal and pH sensitivity, reducible degradability and intrinsic photoluminescence were successfully prepared and characterized.
Collapse
Affiliation(s)
- Chen Zhan
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xiao-Bin Fu
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance
- East China Normal University
- Shanghai 200062
- People's Republic of China
| | - Yefeng Yao
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance
- East China Normal University
- Shanghai 200062
- People's Republic of China
| | - Hua-Ji Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
8
|
Hou L, Chen Q, An Z, Wu P. Understanding the thermosensitivity of POEGA-based star polymers: LCST-type transition in water vs. UCST-type transition in ethanol. SOFT MATTER 2016; 12:2473-2480. [PMID: 26822827 DOI: 10.1039/c5sm03054d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lower critical solution temperature (LCST) transition in water and the upper critical solution temperature (UCST) transition in ethanol of poly(oligo(ethylene glycol) acrylate) (POEGA)-based core cross-linked star (CCS) polymers have been investigated and compared by employing turbidity, dynamic light scattering (DLS), (1)H NMR and FTIR measurements. Macroscopic phase transitions in water and in ethanol were observed to occur when passing through the transition temperature, as revealed by DLS and turbidity measurements. Analysis by IR indicated that the interactions between the polymer chains and solvent molecules in water are stronger than those in ethanol such that the CCS polymer arm chains in water adopt more extended conformations. Moreover, hydrophobic interaction among the aliphatic groups plays a predominant role in the LCST-type transition in water whereas weak solvation of the polymer chains results in the UCST-type transition in ethanol. Additionally, the LCST-type transition in water was observed to be much more abrupt and complete than the UCST-type transition in ethanol, as suggested by (1)H NMR and IR at the molecular level. Finally, an abnormal "forced hydration" phenomenon was observed during the LCST transition upon heating. This study provides a detailed understanding of the subtle distinctions between the thermal transitions of CCS polymers in two commonly used solvents, which may be useful to guide future materials design for a wide range of applications.
Collapse
Affiliation(s)
- Lei Hou
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qijing Chen
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Liu HJ, Xu YY, Chen Y. Influence of sodium dodecyl sulfate on the phase transition of thermoresponsive hyperbranched polymer in water. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Tong JG, Wei ZY, Yang HL, Yang ZY, Chen Y. Study on the phase transition behaviors of thermoresponsive hyperbranched polyampholytes in water. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Su G, Zhou T, Zhang Y, Liu X, Zhang A. Microdynamics mechanism of D2O absorption of the poly(2-hydroxyethyl methacrylate)-based contact lens hydrogel studied by two-dimensional correlation ATR-FTIR spectroscopy. SOFT MATTER 2016; 12:1145-1157. [PMID: 26577131 DOI: 10.1039/c5sm02542g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A good understanding of the microdynamics of the water absorption of poly(2-hydroxyethyl methacrylate) (PHEMA)-based contact lens is significant for scientific investigation and commercial applications. In this study, time-dependent ATR-FTIR spectroscopy combined with the perturbation correlation moving-window two-dimensional (PCMW2D) technique and 2D correlation analysis was used to study the microdynamics mechanism. PCMW2D revealed that D2O took 3.4 min to penetrate into the contact lens. PCMW2D also found the PHEMA-based contact lens underwent two processes (I and II) during D2O absorption, and the time regions of processes I and II are 3.4-12.4 min and 12.4-57.0 min. According to 2D correlation analysis, it was proved that process I has 5 steps, and process II has 3 steps. For process I, the first step is D2O hydrogen-bonding with "free" C[double bond, length as m-dash]O in the side chains. The second step is the hydrogen bond generation of the O-HO-D structure between D2O and "free" O-H groups in the side chain ends. The third step is the hydrogen bond generation of D2O and the "free" C[double bond, length as m-dash]O groups close to the crosslinking points in the contact lens. The fourth and the fifth steps are the hydration of -CH3 and -CH2- groups by D2O, respectively. For process II, the first step is the same as that of process I. The second step is the hydrogen bonds breaking of bonded O-H groups and the deuterium exchange between D2O and O-H groups in the side chain ends. The third step is also related to the deuterium exchange, which is the hydrogen bonds regeneration between the dissociated C[double bond, length as m-dash]O groups and the new O-D.
Collapse
Affiliation(s)
- Gehong Su
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Yanyan Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Xifei Liu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Aiming Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Liu TT, Tian W, Song YL, Bai Y, Wei PL, Yao H, Yan HX. Reversible Self-Assembly of Backbone-Thermoresponsive Long Chain Hyperbranched Poly( N-Isopropyl Acrylamide). Polymers (Basel) 2016; 8:polym8020033. [PMID: 30979127 PMCID: PMC6432596 DOI: 10.3390/polym8020033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
In this paper, we mainly described the reversible self-assembly of a backbone-thermoresponsive, long-chain, hyperbranched poly(N-isopropyl acrylamide) (LCHBPNIPAM) in aqueous solution. Here, we revealed a reversible self-assembly behavior of LCHBPNIPAM aqueous solution derived from temperature. By controlling the temperature of LCHBPNIPAM aqueous solution, we tune the morphology of the LCHBPNIPAM self-assemblies. When the solution temperature increased from the room temperature to the lower critical solution temperature of PNIPAM segments, LCHBPNIPAM self-assembled from multi-compartment vesicles into solid micelles. The morphology of LCHBPNIPAM self-assemblies changed from solid micelles to multi-compartment vesicles again when the temperature decreased back to the room temperature. The size presented, at first, an increase, and then a decrease, tendency in the heating-cooling process. The above thermally-triggered self-assembly behavior of LCHBPNIPAM aqueous solution was investigated by dynamic/static light scattering, transmission electron microscopy, atomic force microscopy, fluorescence spectroscopy, 1H nuclear magnetic resonance in D2O, and attenuated total reflectance Fourier transform infrared spectroscopy. These results indicated that LCHBPNIPAM aqueous solution presents a reversible self-assembly process. The controlled release behaviors of doxorubicin from the vesicles and micelles formed by LCHBPNIPAM further proved the feasibility of these self-assemblies as the stimulus-responsive drug delivery system.
Collapse
Affiliation(s)
- Ting-Ting Liu
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yan-Li Song
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yang Bai
- Xi'an Mordern Chemistry Research Institute, Xi'an 710065, China.
| | - Peng-Li Wei
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hao Yao
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hong-Xia Yan
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
13
|
Wang B, Liu HJ, Fu XB, Yao Y, Chen Y. Three-Component Supramolecular System with Multistimuli-Responsive Properties in Water. Chem Asian J 2015; 10:1690-7. [PMID: 26033839 DOI: 10.1002/asia.201500457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 12/29/2022]
Abstract
Hyperbranched polyethylenimine terminated with isobutyramide groups (HPEI-IBAm), 4-(phenylazo)benzoic acid (PABA), and α-cyclodextrin (α-CD) were assembled together at pH≈7 to form the three-component supramolecular complexes that were verified by (1) H and 2D ROESY (1) H NMR spectroscopy. UV/Vis spectrometric titration experiments showed that the content of α-CD in the three-component complexes was less than the feed amount and it was difficult for all the PABA units in the complexes to further form complexes with α-CD. The obtained three-component supramolecular complexes exhibited thermoresponsive properties in water. Increasing the α-CD concentration led to a sharp increase in the cloud point temperature (Tcp ) at the beginning, but after the [α-CD]/[PABA] ratio was in the region of 1.3-1.6, the Tcp increased gradually When the concentration of α-CD was low, a higher concentration of PABA led to a lower Tcp , however, the opposite was observed when the concentration of α-CD was high. For the three-component complex, increasing the α-CD concentration at pH≈7 or at pH≈9 led to different Tcp temperatures. In the low α-CD concentration range, adjusting the pH from ≈7-≈9 resulted in an increase in the Tcp , similar but not so pronounced as that of the two-component system of HPEI-IBAm/[PABA]. When the concentration of α-CD was high, adjusting the pH from ≈7-≈9 decreased the Tcp ; this observation is different to that of the two-component system of HPEI-IBAm/[PABA]. Reversible trans-to-cis photoisomerization of azobenzene units in the complexes occurred, following irradiation with UV or visible light. Trans-to-cis isomerization of azobenzene units decreased the Tcp . However, this result differed to that of the two-component system of HPEI-IBAm/PABA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, School of Sciences, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Wei Jin Road 92, Tianjin, 300072, P. R. China
| | - Hua-Ji Liu
- Department of Chemistry, School of Sciences, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Wei Jin Road 92, Tianjin, 300072, P. R. China.
| | - Xiao-Bin Fu
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Yefeng Yao
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Yu Chen
- Department of Chemistry, School of Sciences, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Wei Jin Road 92, Tianjin, 300072, P. R. China.
| |
Collapse
|
14
|
Yuan Y, Liu HJ, Chen Y. Influence of hydrophilic dyes on the phase transition of a thermoresponsive hyperbranched polymer. RSC Adv 2015. [DOI: 10.1039/c5ra18687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influences of hydrophilic dyes on the phase transition behaviors of HPEI-IBAm in the neutral and charged state were different.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
| | - Hua-Ji Liu
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
| | - Yu Chen
- Department of Chemistry
- School of Sciences
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
| |
Collapse
|
15
|
Li W, Wu P. Insights into the denaturation of bovine serum albumin with a thermo-responsive ionic liquid. SOFT MATTER 2014; 10:6161-6171. [PMID: 25036860 DOI: 10.1039/c4sm00941j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Influence of bovine serum albumin on the phase transition behavior of the synthetic ionic liquid tetrabutylphosphonium styrenesulfonate ([P(4),(4),(4),(4)][SS]) together with the interactions between [P(4),(4),(4),(4)][SS] and bovine serum albumin (BSA) was investigated by differential scanning calorimetry (DSC), turbidity measurements, FT-IR, in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2DCOS). Our results reveal that the addition of BSA would increase the phase transition temperature but weaken the transition behavior of [P(4),(4),(4),(4)][SS] solution. DSC and turbidity data show us that the transition temperature of a ternary system with 20 wt% BSA added is 3 °C higher than that with 20% (w/v) [P(4),(4),(4),(4)][SS] solution. Interactions between [P(4),(4),(4),(4)][SS] and BSA together with the phase transition behavior of [P(4),(4),(4),(4)][SS] are responsible for the denaturation of BSA upon heating. PCMW determined the obvious distinctions in LCST of different chemical groups manifesting their various response sequences in the phase separation and denaturation upon heating. Finally, 2DCOS was employed to elucidate the sequential order of chemical group motions during heating. It is worth noting that the appearance of the isosbestic point in the C[double bond, length as m-dash]O groups of FTIR spectra indicates the direct transformation of the conformation of α-helix, random coil to β-sheet and β-turn without an intermediate transition state. Additionally, the phase separation process of ionic liquid is able to recover to the original state before heating while the denaturation of BSA is irreversible after a cooling process.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
16
|
Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Noda I. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Li W, Wu P. Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism. Polym Chem 2014. [DOI: 10.1039/c4py00593g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Boreham A, Pfaff M, Fleige E, Haag R, Alexiev U. Nanodynamics of dendritic core-multishell nanocarriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1686-95. [PMID: 24460144 DOI: 10.1021/la4043155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The molecular dynamics of polymeric nanocarriers is an important parameter for controlling the interaction of nanocarrier branches with cargo. Understanding the interplay of dendritic polymer dynamics, temperature, and cargo molecule interactions should provide valuable new insight for tailoring the dendritic architecture to specific needs in nanomedicine, drug, dye, and gene delivery. Here, we have investigated polyglycerol-based core-multishell (CMS) nanotransporters with incorporated Nile Red as a fluorescent drug mimetic and CMS nanotransporters with a covalently bound fluorophore (Indocarbocyanine) using fluorescence spectroscopy methods. From time-resolved fluorescence depolarization we have obtained the rotational diffusion dynamics of the incorporated dye, the nanocarrier, and its branches as a function of temperature. UV/vis and fluorescence lifetime measurements provided additional information on the local dye environment. Our results show a distribution of the cargo Nile Red within the nanotransporter shells that depends on solvent and temperature. In particular, we show that the flexibility of the polymer branches in the unimolecular state of the nanotransporter undergoes a temperature-dependent transition which correlates with a larger space for the mobility of the incorporated hydrophobic drug mimetic Nile Red and a higher probability of cargo-solvent interactions at temperatures above 31 °C. The measurements have further revealed that a loss of the cargo molecule Nile Red occurred neither upon dilution of the CMS nanotransporters nor upon heating. Thus, the unimolecular preloaded CMS nanotransporters retain their cargo and are capable to transport and respond to temperature, thereby fulfilling important requirements for biomedical applications.
Collapse
Affiliation(s)
- Alexander Boreham
- Institut für Experimentalphysik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Han X, Xiao P, Zhao H, Zeng C, Zhou J. Response mechanism of the phase transitions of poly(n-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) using infrared spectroscopy. APPLIED SPECTROSCOPY 2014; 68:879-889. [PMID: 25061789 DOI: 10.1366/13-07437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The thermal and ionic effects on the phase transitions of poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer with benzo-18-crown-6-acrylamide, poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (PNIPAAm-co-BCAm), were investigated using infrared (IR) spectral variations of methyl (CH3), C=O, and amine (NH) groups. Subsequently, perturbation correlation moving-window two-dimensional correlation infrared spectroscopy (PCMW 2D-IR) was applied to clarify the differences in the phase-transition mechanisms of the polymers. The dominant influence on the phase-transition mechanism of PNIPAAm is whether the anion is evenly distributed in the bulk solution. The results show that the phase transition shifts to a lower temperature with increasing barium chloride (BaCl2) concentrations. In addition, the effect of the anion on the chemical group is homogeneous upon heating. As a result, the relevant transition temperature ranges have remain approximately constant. In contrast, the dominant influence on the phase-transition mechanism of PNIPAAm-co-BCAm is the interactions of the polymer chains with barium ions (Ba(2+)). The hydrophilic BCAm-Ba(2+) complexes distributed in the PNIPAAm-co-BCAm chain prevent the water molecules from leaving the polymer chains, which leads to an increase in the transition temperature and the complicated variation of the transition temperature range, as environmental stimuli-response behavior, with increasing BaCl2 concentrations.
Collapse
Affiliation(s)
- Xiaoyan Han
- Xiangtan University, School of Chemical Engineering, Xiangtan 411105, China
| | | | | | | | | |
Collapse
|
21
|
Liu Y, Li W, Hou L, Wu P. Thermosensitive hyperbranched polyethylenimine partially substituted with N-isopropylacrylamide monomer: thermodynamics and use in developing a thermosensitive graphene composite. RSC Adv 2014. [DOI: 10.1039/c4ra02242d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Jiang S, Yao Y, Chen Q, Chen Y. NMR Study of Thermoresponsive Hyperbranched Polymer in Aqueous Solution with Implication on the Phase Transition. Macromolecules 2013. [DOI: 10.1021/ma402095w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Songzi Jiang
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, P. R. China
| | - Yefeng Yao
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, P. R. China
| | - Qun Chen
- Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, P. R. China
| | - Yu Chen
- Department
of Chemistry, School of Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
| |
Collapse
|
23
|
Li X, Haba Y, Ochi K, Yuba E, Harada A, Kono K. PAMAM Dendrimers with an Oxyethylene Unit-Enriched Surface as Biocompatible Temperature-Sensitive Dendrimers. Bioconjug Chem 2013; 24:282-90. [DOI: 10.1021/bc300190v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaojie Li
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yasuhiro Haba
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kanako Ochi
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
24
|
Tian W, Wei XY, Liu YY, Fan XD. A branching point thermo and pH dual-responsive hyperbranched polymer based on poly(N-vinylcaprolactam) and poly(N,N-diethyl aminoethyl methacrylate). Polym Chem 2013. [DOI: 10.1039/c3py00218g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Schömer M, Seiwert J, Frey H. Hyperbranched Poly(propylene oxide): A Multifunctional Backbone-Thermoresponsive Polyether Polyol Copolymer. ACS Macro Lett 2012; 1:888-891. [PMID: 35607138 DOI: 10.1021/mz300256y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Backbone-thermoresponsive hyperbranched poly(propylene oxide)-based polyether polyols have been synthesized by anionic ring-opening copolymerization of glycidol and propylene oxide. The number of functional hydroxyl end groups and the lower critical solution temperature (LCST) can be readily adjusted by varying the comonomer ratio. Molecular weights in the range of 1200-2000 g/mol were achieved. Hyperbranched polyether polyols with LCST values between 24 and 83 °C can be obtained in a convenient one-step reaction.
Collapse
Affiliation(s)
- Martina Schömer
- Institute of Organic
Chemistry, Johannes Gutenberg-University, Duesbergweg
10-14, D-55099 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic
Chemistry, Johannes Gutenberg-University, Duesbergweg
10-14, D-55099 Mainz, Germany
| | - Holger Frey
- Institute of Organic
Chemistry, Johannes Gutenberg-University, Duesbergweg
10-14, D-55099 Mainz, Germany
| |
Collapse
|
26
|
Yuk SH, Oh KS, Park J, Lee EH, Kim K, Kwon IC. Docetaxel-loaded composite nanoparticles formed by a temperature-induced phase transition for cancer therapy. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911512448752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Docetaxel-loaded composite nanoparticles were prepared by temperature-induced phase transition of a mixture composed of Pluronic F-68 and liquid Tween 80/soybean oil containing docetaxel. Liquid soybean oil/Tween 80 was used as a solubilizer for docetaxel and Pluronic F-68 to stabilize the liquid soybean oil/Tween 80 containing docetaxel. The phase transition was performed at low temperature to avoid degradation. The docetaxel composite nanoparticles were injected into the tail veins of tumor-bearing mice to evaluate the composite delivery system for the release pattern and the tumor growth. The tumor-targeting capability of composite nanoparticles was verified by noninvasive live animal imaging for the time-dependent excretion profile, the in vivo biodistribution, and the circulation time.
Collapse
Affiliation(s)
- Soon H Yuk
- College of Pharmacy, Korea University, Jochiwon, Yeongi, Chungnam, Republic of Korea
| | - Keun S Oh
- Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinah Park
- College of Pharmacy, Korea University, Jochiwon, Yeongi, Chungnam, Republic of Korea
| | - Eun H Lee
- College of Pharmacy, Korea University, Jochiwon, Yeongi, Chungnam, Republic of Korea
| | - Kwangmeyung Kim
- Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Ick C Kwon
- Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
27
|
Dendrimer-based bionanomaterials produced by surface modification, assembly and hybrid formation. Polym J 2012. [DOI: 10.1038/pj.2012.39] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Jesorka A, Holzwarth AR, Eichhöfer A, Reddy CM, Kinoshita Y, Tamiaki H, Katterle M, Naubron JV, Balaban TS. Water coordinated zinc dioxo-chlorin and porphyrin self-assemblies as chlorosomal mimics: variability of supramolecular interactions. Photochem Photobiol Sci 2012; 11:1069-80. [DOI: 10.1039/c2pp25016k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|