1
|
Coquille S, Pereira CS, Roche J, Santoni G, Engilberge S, Brochier-Armanet C, Girard E, Sterpone F, Madern D. Allostery and Evolution: A Molecular Journey Through the Structural and Dynamical Landscape of an Enzyme Super Family. Mol Biol Evol 2025; 42:msae265. [PMID: 39834309 PMCID: PMC11747225 DOI: 10.1093/molbev/msae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon. By introducing a few of mutations associated to the emergence of allosteric LDHs into the non-allosteric MalDH from Methanopyrus kandleri, we have gradually shifted its enzymatic profile toward that typical of allosteric LDHs. We first investigated the process triggering homotropic activation. The structures of the resulting mutants show the typical compact organization of the R-active state of LDHs, but a distorted (T-like) catalytic site demonstrating that they corresponds to hybrid states. Molecular dynamics simulations and free energy calculations confirmed the capability of these mutants to sample the T-inactive state. By adding a final single mutation to fine-tune the flexibility of the catalytic site, we obtained an enzyme with both sigmoid (homotropic) and hyperbolic (heterotropic) substrate activation profiles. Its structure shows a typical extended T-state as in LDHs, whereas its catalytic state has as a restored configuration favorable for catalysis. Free energy calculations indicate that the T and R catalytic site configurations are in an equilibrium that depends on solvent conditions. We observed long-range communication between monomers as required for allosteric activation. Our work links the evolution of allosteric regulation in the LDH/MDH superfamily to the ensemble model of allostery at molecular level, and highlights the important role of the underlying protein dynamics.
Collapse
Affiliation(s)
| | - Caroline Simões Pereira
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Céline Brochier-Armanet
- Université Claude Bernard Lyon1, LBBE, UMR 5558 CNRS, VAS, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
2
|
Wakabayashi T, Oide M, Nakasako M. CryoEM-sampling of metastable conformations appearing in cofactor-ligand association and catalysis of glutamate dehydrogenase. Sci Rep 2024; 14:11165. [PMID: 38750092 PMCID: PMC11096400 DOI: 10.1038/s41598-024-61793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Kinetic aspects of enzymatic reactions are described by equations based on the Michaelis-Menten theory for the initial stage. However, the kinetic parameters provide little information on the atomic mechanism of the reaction. In this study, we analyzed structures of glutamate dehydrogenase in the initial and steady stages of the reaction using cryoEM at near-atomic resolution. In the initial stage, four metastable conformations displayed different domain motions and cofactor/ligand association modes. The most striking finding was that the enzyme-cofactor-substrate complex, treated as a single state in the enzyme kinetic theory, comprised at least three different metastable conformations. In the steady stage, seven conformations, including derivatives from the four conformations in the initial stage, made the reaction pathway complicated. Based on the visualized conformations, we discussed stage-dependent pathways to illustrate the dynamics of the enzyme in action.
Collapse
Grants
- JPMJPR22E2 Japan Science and Technology Agency
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp26800227 Japan Society for the Promotion of Science
- 18J11653 Japan Society for the Promotion of Science
- jp15076210 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp20050030 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp22018027 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp23120525, jp25120725 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp15H01647 Ministry of Education, Culture, Sports, Science and Technology of Japan
- jp17H05891 Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-Ku, Tokyo, 102-0076, Japan
- Protein Research Institute, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-Ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
3
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
5
|
Iorio A, Roche J, Engilberge S, Coquelle N, Girard E, Sterpone F, Madern D. Biochemical, structural and dynamical studies reveal strong differences in the thermal-dependent allosteric behavior of two extremophilic lactate dehydrogenases. J Struct Biol 2021; 213:107769. [PMID: 34229075 DOI: 10.1016/j.jsb.2021.107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
In this work, we combined biochemical and structural investigations with molecular dynamics (MD) simulations to analyze the very different thermal-dependent allosteric behavior of two lactate dehydrogenases (LDH) from thermophilic bacteria. We found that the enzyme from Petrotoga mobilis (P. mob) necessitates an absolute requirement of the allosteric effector (fructose 1, 6-bisphosphate) to ensure functionality. In contrast, even without allosteric effector, the LDH from Thermus thermophilus (T. the) is functional when the temperature is raised. We report the crystal structure of P. mob LDH in the Apo state solved at 1.9 Å resolution. We used this structure and the one from T. the, obtained previously, as a starting point for MD simulations at various temperatures. We found clear differences between the thermal dynamics, which accounts for the behavior of the two enzymes. Our work demonstrates that, within an allosteric enzyme, some areas act as local gatekeepers of signal transmission, allowing the enzyme to populate either the T-inactive or the R-active states with different degrees of stringency.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Nicolas Coquelle
- Large Scale Structures Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| | | |
Collapse
|
6
|
Rosenberg MM, Yao T, Patton GC, Redfield AG, Roberts MF, Hedstrom L. Enzyme-Substrate-Cofactor Dynamical Networks Revealed by High-Resolution Field Cycling Relaxometry. Biochemistry 2020; 59:2359-2370. [PMID: 32479091 PMCID: PMC8364753 DOI: 10.1021/acs.biochem.0c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.
Collapse
Affiliation(s)
- Masha M. Rosenberg
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Tianjiong Yao
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Gregory C. Patton
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Alfred G. Redfield
- Department of Biochemistry, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Mary F. Roberts
- Department of Chemistry, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-9110 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-3808 USA
| |
Collapse
|
7
|
Egawa T, Deng H, Chang E, Callender R. Effect of Protein Isotope Labeling on the Catalytic Mechanism of Lactate Dehydrogenase. J Phys Chem B 2019; 123:9801-9808. [PMID: 31644296 DOI: 10.1021/acs.jpcb.9b08656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate how isotopic labeling of the enzyme lactate dehydrogenase (LDH) affects its function. LDH is of special interest because there exists a line of residues spanning the protein that are involved in the transition state (TS) of the chemical reaction coordinate (so-called promoting vibration). Hence, studies have been carried out on this protein (as well as others) using labeled protein (so-called heavy protein) along with measurements of single turnover kcat yielding a KIE (=kcatlight/kcatheavy) aimed at understanding the effect of labeling generally and more specifically this line of residues. Here, it is shown that 13C, 15N, and 2H atom labeling of hhLDH (human heart) affects its internal structure which in turn affects its dynamics and catalytic mechanism. Spectral studies employing advanced FTIR difference spectroscopy show that the height of the electronic potential surface of the TS is lowered (probably by ground state destabilization) by labeling. Moreover, laser-induced T-jump relaxation kinetic spectroscopy shows that the microsecond to millisecond nuclear motions internal to the protein are affected by labeling. While the effects are small, they are sufficient to contribute to the observed KIE values as well or even more than promoting vibration effects.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Hua Deng
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Eric Chang
- Department of Chemistry and Physical Sciences , Pace University , New York , New York 10038 , United States
| | - Robert Callender
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| |
Collapse
|
8
|
Deng H, Ke S, Callender R, Balakrishnan G, Spiro TG, May ER, Brooks CL. Computational Studies of Catalytic Loop Dynamics in Yersinia Protein Tyrosine Phosphatase Using Pathway Optimization Methods. J Phys Chem B 2019; 123:7840-7851. [PMID: 31437399 PMCID: PMC6752976 DOI: 10.1021/acs.jpcb.9b06759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yersinia Protein Tyrosine Phosphatase (YopH) is the most efficient enzyme among all known PTPases and relies on its catalytic loop movements for substrate binding and catalysis. Fluorescence, NMR, and UV resonance Raman (UVRR) techniques have been used to study the thermodynamic and dynamic properties of the loop motions. In this study, a computational approach based on the pathway refinement methods nudged elastic band (NEB) and harmonic Fourier beads (HFB) has been developed to provide structural interpretations for the experimentally observed kinetic processes. In this approach, the minimum potential energy pathways for the loop open/closure conformational changes were determined by NEB using a one-dimensional global coordinate. Two dimensional data analyses of the NEB results were performed as an efficient method to qualitatively evaluate the energetics of transitions along several specific physical coordinates. The free energy barriers for these transitions were then determined more precisely using the HFB method. Kinetic parameters were estimated from the energy barriers using transition state theory and compared against experimentally determined kinetic parameters. When the calculated energy barriers are calibrated by a simple "scaling factor", as have been done in our previous vibrational frequency calculations to explain the ligand frequency shift upon its binding to protein, it is possible to make structural interpretations of several observed enzyme dynamic rates. For example, the nanosecond kinetics observed by fluorescence anisotropy may be assigned to the translational motion of the catalytic loop and microsecond kinetics observed in fluorescence T-jump can be assigned to the loop backbone dihedral angle flipping. Furthermore, we can predict that a Trp354 conformational conversion associated with the loop movements would occur on the tens of nanoseconds time scale, to be verified by future UVRR T-jump studies.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Shan Ke
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | | | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, USA 06269
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Deng H, Dyer RB, Callender R. Active-Site Glu165 Activation in Triosephosphate Isomerase and Its Deprotonation Kinetics. J Phys Chem B 2019; 123:4230-4241. [PMID: 31013084 DOI: 10.1021/acs.jpcb.9b02981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) via an enediol(ate) intermediate. The active-site residue Glu165 serves as the catalytic base during catalysis. It abstracts a proton from C1 carbon of DHAP to form the reaction intermediate and donates a proton to C2 carbon of the intermediate to form product GAP. Our difference Fourier transform infrared spectroscopy studies on the yeast TIM (YeTIM)/phosphate complex revealed a C═O stretch band at 1706 cm-1 from the protonated Glu165 carboxyl group at pH 7.5, indicating that the p Ka of the catalytic base is increased by >3.0 pH units upon phosphate binding, and that the Glu165 carboxyl environment in the complex is still hydrophilic in spite of the increased p Ka. Hence, the results show that the binding of the phosphodianion group is part of the activation mechanism which involves the p Ka elevation of the catalytic base Glu165. The deprotonation kinetics of Glu165 in the μs to ms time range were determined via infrared (IR) T-jump studies on the YeTIM/phosphate and ("heavy enzyme") [U-13C,-15N]YeTIM/phosphate complexes. The slower deprotonation kinetics in the ms time scale is due to phosphate dissociation modulated by the loop motion, which slows down by enzyme mass increase to show a normal heavy enzyme kinetic isotope effect (KIE) ∼1.2 (i.e., slower rate in the heavy enzyme). The faster deprotonation kinetics in the tens of μs time scale is assigned to temperature-induced p Ka decrease, while phosphate is still bound, and it shows an inverse heavy enzyme KIE ∼0.89 (faster rate in the heavy enzyme). The IR static and T-jump spectroscopy provides atomic-level resolution of the catalytic mechanism because of its ability to directly observe the bond breaking/forming process.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx, New York 10461 , United States
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Robert Callender
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx, New York 10461 , United States
| |
Collapse
|
10
|
Affiliation(s)
- He Yin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Adam Grofe
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
11
|
Suzuki K, Maeda S, Morokuma K. Roles of Closed- and Open-Loop Conformations in Large-Scale Structural Transitions of l-Lactate Dehydrogenase. ACS OMEGA 2019; 4:1178-1184. [PMID: 31459393 PMCID: PMC6648161 DOI: 10.1021/acsomega.8b02813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/28/2018] [Indexed: 06/10/2023]
Abstract
The mechanism of l-lactate generation from pyruvate by l-lactate dehydrogenase (LDH) from the rabbit muscle was studied theoretically by the multistructural microiteration (MSM) method combined with the quantum mechanics/molecular mechanics (QM/MM)-ONIOM method, where the MSM method describes the MM environment as a weighted average of multiple different structures that are fully relaxed during geometry optimization or a reaction path calculation for the QM part. The results showed that the substrate binding and product states were stabilized only in the open-loop conformation of LDH and the reaction occurred in the closed-loop conformation. In other words, before and after the chemical reaction, a large-scale structural transition from the open-loop conformation to the closed-loop conformation and vice versa occurred. The closed-loop conformation stabilized the transition state of the reaction. In contrast, the open-loop conformation stabilized the substrate binding and final states. In other words, the closed- to open-loop transition at the substrate binding state urges capture of the substrate molecule, the subsequent open- to closed-loop transition promotes the product generation, and the final closed- to open-loop transition at the final state prevents the reverse reaction going back to the substrate binding state. It is thus suggested that the exchange of stability between the closed- and open-loop conformations at different states promotes the catalytic cycle.
Collapse
Affiliation(s)
- Kimichi Suzuki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- Fukui
Institute for Fundamental Chemistry, Kyoto
University, Kyoto 606-8103, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- Research
and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Hokkaido 001-0021, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto
University, Kyoto 606-8103, Japan
| |
Collapse
|
12
|
Peng HL, Callender R. Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes. Photochem Photobiol 2017; 93:1193-1203. [PMID: 28391608 PMCID: PMC5603363 DOI: 10.1111/php.12775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
Abstract
Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| |
Collapse
|
13
|
Reddish MJ, Callender R, Dyer RB. Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase. Biophys J 2017; 112:1852-1862. [PMID: 28494956 DOI: 10.1016/j.bpj.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022] Open
Abstract
Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 μs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.
Collapse
Affiliation(s)
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Wang Z, Chang EP, Schramm VL. Triple Isotope Effects Support Concerted Hydride and Proton Transfer and Promoting Vibrations in Human Heart Lactate Dehydrogenase. J Am Chem Soc 2016; 138:15004-15010. [PMID: 27766841 DOI: 10.1021/jacs.6b09049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition path sampling simulations have proposed that human heart lactate dehydrogenase (LDH) employs protein promoting vibrations (PPVs) on the femtosecond (fs) to picosecond (ps) time scale to promote crossing of the chemical barrier. This chemical barrier involves both hydride and proton transfers to pyruvate to form l-lactate, using reduced nicotinamide adenine dinucleotide (NADH) as the cofactor. Here we report experimental evidence from three types of isotope effect experiments that support coupling of the promoting vibrations to barrier crossing and the coincidence of hydride and proton transfer. We prepared the native (light) LDH and a heavy LDH labeled with 13C, 15N, and nonexchangeable 2H (D) to perturb the predicted PPVs. Heavy LDH has slowed chemistry in single turnover experiments, supporting a contribution of PPVs to transition state formation. Both the [4-2H]NADH (NADD) kinetic isotope effect and the D2O solvent isotope effect were increased in dual-label experiments combining both NADD and D2O, a pattern maintained with both light and heavy LDHs. These isotope effects support concerted hydride and proton transfer for both light and heavy LDHs. Although the transition state barrier-crossing probability is reduced in heavy LDH, the concerted mechanism of the hydride-proton transfer reaction is not altered. This study takes advantage of triple isotope effects to resolve the chemical mechanism of LDH and establish the coupling of fs-ps protein dynamics to barrier crossing.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric P Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
15
|
Pan X, Schwartz SD. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models. J Phys Chem B 2016; 120:6612-20. [PMID: 27347759 DOI: 10.1021/acs.jpcb.6b05119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Nie B, Lodewyks K, Deng H, Desamero RZB, Callender R. Active-Loop Dynamics within the Michaelis Complex of Lactate Dehydrogenase from Bacillus stearothermophilus. Biochemistry 2016; 55:3803-14. [PMID: 27319381 DOI: 10.1021/acs.biochem.6b00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale. This interconversion strongly accelerates with an increase in temperature because of significant enthalpy barriers. Binding of NADH to bsLDH results in minor changes of the loop dynamics and does not shift the open-closed equilibrium, but binding of the oxamate substrate mimic shifts this equilibrium to the closed state. At high excess oxamate concentrations where all active sites are nearly saturated with the substrate mimic, all active site mobile loops are mainly closed. The observed active-loop dynamics for bsLDH is very similar to that previously observed for pig heart LDH.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Kara Lodewyks
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Ruel Z B Desamero
- Department of Chemistry, York College-CUNY, The CUNY Institute for Macromolecular Assemblies, and Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , Jamaica, New York 11451, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
17
|
Peng HL, Egawa T, Chang E, Deng H, Callender R. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases. J Phys Chem B 2015; 119:15256-62. [PMID: 26556099 DOI: 10.1021/acs.jpcb.5b09909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced β-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
18
|
Pan X, Schwartz SD. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations. J Phys Chem B 2015; 119:5430-6. [PMID: 25831215 DOI: 10.1021/acs.jpcb.5b01840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Abstract
![]()
As is well-known,
enzymes are proteins designed to accelerate specific life essential
chemical reactions by many orders of magnitude. A folded protein is
a highly dynamical entity, best described as a hierarchy or ensemble
of interconverting conformations on all time scales from femtoseconds
to minutes. We are just beginning to learn what role these dynamics
play in the mechanism of chemical catalysis by enzymes due to extraordinary
difficulties in characterizing the conformational space, that is,
the energy landscape, of a folded protein. It seems clear now that
their role is crucially important. Here we discuss approaches, based
on vibrational spectroscopies of various sorts, that can reveal the
energy landscape of an enzyme–substrate (Michaelis) complex
and decipher which part of the typically very complicated landscape
is relevant to catalysis. Vibrational spectroscopy is quite sensitive
to small changes in bond order and bond length, with a resolution
of 0.01 Å or less. It is this sensitivity that is crucial to
its ability to discern bond reactivity. Using isotope edited
IR approaches, we have studied in detail the role of conformational
heterogeneity and dynamics in the catalysis of hydride transfer by
LDH (lactate dehydrogenase). Upon the binding of substrate, the LDH·substrate
system undergoes a search through conformational space to find a range
of reactive conformations over the microsecond to millisecond time
scale. The ligand is shuttled to the active site via first forming
a weakly bound enzyme·ligand complex, probably consisting of
several heterogeneous structures. This complex undergoes numerous
conformational changes spread throughout the protein that shuttle
the enzyme·substrate complex to a range of conformations where
the substrate is tightly bound. This ensemble of conformations all
have a propensity toward chemistry, but some are much more facile
for carrying out chemistry than others. The search for these tightly
bound states is clearly directed by the forces that the protein can
bring to bear, very much akin to the folding process to form native
protein in the first place. In fact, the conformational subspace of
reactive conformations of the Michaelis complex can be described as
a “collapse” of reactive substates compared with that
found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure
can modulate the on-enzyme reactivity. It is very difficult to account
for how the dynamical nature of the ground state of the Michaelis
complex modulates function by transition state concepts since dynamical
disorder is not a starting feature of the theory. We find that dynamical
disorder may well play a larger or similar sized role in the measured
Gibbs free energy of a reaction compared with the actual energy barrier
involved in the chemical event. Our findings are broadly compatible
with qualitative concepts of evolutionary adaptation of function such
as adaptation to varying thermal environments. Our work suggests a
methodology to determine the important dynamics of the Michaelis complex.
Collapse
Affiliation(s)
- Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - R. Brian Dyer
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Reddish MJ, Peng HL, Deng H, Panwar KS, Callender R, Dyer RB. Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy. J Phys Chem B 2014; 118:10854-62. [PMID: 25149276 PMCID: PMC4167064 DOI: 10.1021/jp5050546] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm(-1), respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | | | | | | | | | |
Collapse
|
21
|
Peng HL, Deng H, Dyer RB, Callender R. Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism. Biochemistry 2014; 53:1849-57. [PMID: 24576110 PMCID: PMC3985751 DOI: 10.1021/bi500215a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Lactate
dehydrogenase (LDH) catalyzes the interconversion between
pyruvate and lactate with nicotinamide adenine dinucleotide (NAD)
as a cofactor. Using isotope-edited difference Fourier transform infrared
spectroscopy on the “live” reaction mixture (LDH·NADH·pyruvate
⇌ LDH·NAD+·lactate) for the wild-type
protein and a mutant with an impaired catalytic efficiency, a set
of interconverting conformational substates within the pyruvate side
of the Michaelis complex tied to chemical activity is revealed. The
important structural features of these substates include (1) electronic
orbital overlap between pyruvate’s C2=O bond
and the nicotinamide ring of NADH, as shown from the observation of
a delocalized vibrational mode involving motions from both moieties,
and (2) a characteristic hydrogen bond distance between the pyruvate
C2=O group and active site residues, as shown by
the observation of at least four C2=O stretch bands
indicating varying degrees of C2=O bond polarization.
These structural features form a critical part of the expected reaction
coordinate along the reaction path, and the ability to quantitatively
determine them as well as the substate population ratios in the Michaelis
complex provides a unique opportunity to probe the structure–activity
relationship in LDH catalysis. The various substates have a strong
variance in their propensity toward on enzyme chemistry. Our results
suggest a physical mechanism for understanding the LDH-catalyzed chemistry
in which the bulk of the rate enhancement can be viewed as arising
from a stochastic search through an available phase space that, in
the enzyme system, involves a restricted ensemble of more reactive
conformational substates as compared to the same chemistry in solution.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
22
|
Ding B, Laaser JE, Liu Y, Wang P, Zanni MT, Chen Z. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy. J Phys Chem B 2013; 117:14625-34. [PMID: 24228619 DOI: 10.1021/jp408064b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
23
|
Nie B, Deng H, Desamero R, Callender R. Large scale dynamics of the Michaelis complex in Bacillus stearothermophilus lactate dehydrogenase revealed by a single-tryptophan mutant study. Biochemistry 2013; 52:1886-92. [PMID: 23428201 DOI: 10.1021/bi3017125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
24
|
Deng H. Enzyme active site interactions by Raman/FTIR, NMR, and ab initio calculations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 93:153-82. [PMID: 24018325 PMCID: PMC5484042 DOI: 10.1016/b978-0-12-416596-0.00005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
25
|
Abstract
The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood-Ljungdahl pathway, which involves the conversion of CO or H2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetyl-CoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni·CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 Å (1 Å=0.1 nm) channel guides CO, generated at the active site of CODH, to a CO 'cage' near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol-disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.
Collapse
|
26
|
Collins KD. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 2012; 167:43-59. [DOI: 10.1016/j.bpc.2012.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/13/2023]
|