1
|
Koren G, Meir S, Holschuh L, Mertens HDT, Ehm T, Yahalom N, Golombek A, Schwartz T, Svergun DI, Saleh OA, Dzubiella J, Beck R. Intramolecular structural heterogeneity altered by long-range contacts in an intrinsically disordered protein. Proc Natl Acad Sci U S A 2023; 120:e2220180120. [PMID: 37459524 PMCID: PMC10372579 DOI: 10.1073/pnas.2220180120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/02/2023] [Indexed: 07/20/2023] Open
Abstract
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.
Collapse
Affiliation(s)
- Gil Koren
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| | - Sagi Meir
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| | - Lennard Holschuh
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
| | | | - Tamara Ehm
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany
| | - Nadav Yahalom
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adina Golombek
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tal Schwartz
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences and Tel Aviv University Center for Light–Matter Interaction, Tel Aviv University, Tel Aviv6997801, Israel
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg22607, Germany
| | - Omar A. Saleh
- BMSE Program, University of California, Santa Barbara, CA93110
- Materials Department, University of California, Santa Barbara, CA93110
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
- Cluster of Excellence livMatS @ FIT–Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universit Freiburg, FreiburgD-79104, Germany
| | - Roy Beck
- The School of Physics and Astronomy, Department of Condensed Matter, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
2
|
Khan MI, Hasan F, Mahmud KAHA, Adnan A. Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
4
|
Deek J, Chung PJ, Safinya CR. Neurofilament networks: Salt-responsive hydrogels with sidearm-dependent phase behavior. Biochim Biophys Acta Gen Subj 2016; 1860:1560-9. [PMID: 26993199 DOI: 10.1016/j.bbagen.2016.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/28/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurofilaments (NFs) - the neuron-specific intermediate filament proteins - are assembled into 10nm wide filaments in a tightly controlled ratio of three different monomer types: NF-Low (NF-L), NF-Medium (NF-M), and NF-High (NF-H). Previous work on reconstituted bovine NF hydrogels has shown the dependence of network properties, including filament alignment and spacing, on the subunit composition. METHODS We use polarized optical microscopy and SAXS to explore the full salt-dependent phase behavior of reconstituted bovine NF networks as a function of various binary and ternary subunit ratios. RESULTS We observe three salt-induced liquid crystalline phases: the liquid-ordered B(G) and N(G) phases, and the disordered I(G) phase. We note the emergent sidearm roles, particularly that of NF-H in driving the parallel to cross-filament transition, and the counter-role of NF-M in suppressing the I(G) phase. CONCLUSIONS In copolymers of NF-LH, NF-H shifts the I(G) to N(G) transition to nearer physiological salt concentrations, as compared to NF-M in copolymers of NF-LM. For ternary mixtures, the role of NF-H is modulated by the ratio of NF-M, where beneath 10wt.% NF-M, NF-H drives the transition to the disordered phase, and above which NF-H increases interfilament spacing. GENERAL SIGNIFICANCE Understanding the role of individual subunits in regulating the network structure will enable us to understand the mechanisms that drive the dysfunction of these networks, as observed in diseased conditions.
Collapse
Affiliation(s)
- Joanna Deek
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States.
| | - Peter J Chung
- Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
5
|
Surin M. From nucleobase to DNA templates for precision supramolecular assemblies and synthetic polymers. Polym Chem 2016. [DOI: 10.1039/c6py00480f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this minireview, we report on the recent advances of utilization of nucleobases and DNA as templates to achieve well-defined supramolecular polymers, synthetic polymers, and sequence-controlled polymers.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel Materials
- Center for Innovation and Research in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| |
Collapse
|
6
|
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 2015; 11:e1004406. [PMID: 26285012 PMCID: PMC4540448 DOI: 10.1371/journal.pcbi.1004406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic. The shape and function of axons is dependent on a dynamic system of microscopic intracellular protein polymers (microtubules, neurofilaments and microfilaments) that comprise the axonal cytoskeleton. Neurofilaments are cargoes of intracellular transport that move along microtubule tracks, and they accumulate abnormally in axons in many neurotoxic and neurodegenerative disorders. Intriguingly, it has been reported that neurofilaments and microtubules, which are normally interspersed in axonal cross-sections, often segregate apart from each other in these disorders, which is something that is never observed in healthy axons. Here we describe a stochastic multiscale computational model that explains the mechanism of this striking segregation and offers insights into the mechanism of neurofilament accumulation in disease.
Collapse
|
7
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
8
|
Pregent S, Lichtenstein A, Avinery R, Laser-Azogui A, Patolsky F, Beck R. Probing the interactions of intrinsically disordered proteins using nanoparticle tags. NANO LETTERS 2015; 15:3080-3087. [PMID: 25822629 DOI: 10.1021/acs.nanolett.5b00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural plasticity of intrinsically disordered proteins serves as a rich area for scientific inquiry. Such proteins lack a fix three-dimensional structure but can interact with multiple partners through numerous weak bonds. Nevertheless, this intrinsic plasticity possesses a challenging hurdle in their characterization. We underpin the intermolecular interactions between intrinsically disordered neurofilaments in various hydrated conditions, using grafted gold nanoparticle (NP) tags. Beyond its biological significance, this approach can be applied to modify the surface interaction of NPs for the creation of future tunable "smart" hybrid biomaterials.
Collapse
Affiliation(s)
- Stive Pregent
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Amir Lichtenstein
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ram Avinery
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Adi Laser-Azogui
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Fernando Patolsky
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beck
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R. Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 2015; 32:92-101. [PMID: 25635910 DOI: 10.1016/j.ceb.2015.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
Studies on the assembly of neuronal intermediate filaments (IFs) date back to the early work of Alzheimer. Developing neurons express a series of IF proteins, sequentially, at distinct stages of mammalian cell differentiation. This correlates with altered morphologies during the neuronal development, including axon outgrowth, guidance and conductivity. Importantly, neuronal IFs that fail to properly assemble into a filamentous network are a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. Traditional structural methodologies fail to fully describe neuronal IF assembly, interactions and resulting function due to IFs structural plasticity, particularly in their C-terminal domains. We review here current progress in the field of neuronal-specific IFs, a dominant component affecting the cytoskeletal structure and function of neurons.
Collapse
Affiliation(s)
- Adi Laser-Azogui
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eti Malka-Gibor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
10
|
Affiliation(s)
- SeongMin Jeong
- Asia Pacific Center for Theoretical Physics/Department of Physics; POSTECH Pohang Korea
| | - Xin Zhou
- School of Physics; University of Chinese Academy of Sciences; Beijing China)
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences and ITMO-University; St. Petersburg Russia)
| | - YongSeok Jho
- Asia Pacific Center for Theoretical Physics/Department of Physics; POSTECH Pohang Korea
| |
Collapse
|
11
|
Deek J, Chung PJ, Kayser J, Bausch AR, Safinya CR. Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. Nat Commun 2014; 4:2224. [PMID: 23892390 DOI: 10.1038/ncomms3224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/01/2013] [Indexed: 12/31/2022] Open
Abstract
Neurofilaments are intermediate filaments assembled from the subunits neurofilament-low, neurofilament-medium and neurofilament-high. In axons, parallel neurofilaments form a nematic liquid-crystal hydrogel with network structure arising from interactions between the neurofilaments' C-terminal sidearms. Here we report, using small-angle X-ray-scattering, polarized-microscopy and rheometry, that with decreasing ionic strength, neurofilament-low-high, neurofilament-low-medium and neurofilament-low-medium-high hydrogels transition from the nematic hydrogel to an isotropic hydrogel (with random, crossed-filament orientation) and to an unexpected new re-entrant liquid-crystal hydrogel with parallel filaments--the bluish-opaque hydrogel--with notable mechanical and water retention properties reminiscent of crosslinked hydrogels. Significantly, the isotropic gel phase stability is sidearm-dependent: neurofilament-low-high hydrogels exhibit a wide ionic strength range, neurofilament-low-medium hydrogels a narrow ionic strength range, whereas neurofilament-low hydrogels lack the isotropic gel phase. This suggests a dominant regulatory role for neurofilament-high sidearms in filament reorientation plasticity, facilitating organelle transport in axons. Neurofilament-inspired biomimetic hydrogels should therefore exhibit remarkable structure-dependent moduli and slow and fast water-release properties.
Collapse
Affiliation(s)
- Joanna Deek
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
12
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
13
|
Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem Soc Trans 2013; 40:1027-31. [PMID: 22988859 DOI: 10.1042/bst20120101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NFs (neurofilaments), the major cytoskeletal constituent of myelinated axons in vertebrates, consist of three different molecular-mass subunit proteins, NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding intrinsically disordered C-terminal side-arms. Liquid crystal gel networks of side-arm-mediated NF assemblies play a key role in the mechanical stability of neuronal processes. Disruptions of the NF network, due to NF overaccumulation or incorrect side-arm interactions, are a hallmark of motor neuron diseases including amyotrophic lateral sclerosis. Using synchrotron small-angle X-ray scattering and various microscopy techniques, we have investigated the role of the peptide charges in the subunit side-arms on the structure and interaction of NFs. Our findings, which delineate the distinct roles of NF-M and NF-H in regulating NF interactions, shed light on possible mechanisms of disruption of optimal mechanical network properties.
Collapse
|
14
|
Lee J, Kim S, Chang R, Jayanthi L, Gebremichael Y. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J Chem Phys 2013; 138:015103. [DOI: 10.1063/1.4773297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Jayanthi L, Stevenson W, Kwak Y, Chang R, Gebremichael Y. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes. J Biol Phys 2012; 39:343-62. [PMID: 23860913 DOI: 10.1007/s10867-012-9293-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022] Open
Abstract
Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.
Collapse
Affiliation(s)
- Lakshmi Jayanthi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|