1
|
Oh YH, Lee SY, Kong X, Oh HB, Lee S. Thermodynamic Reversal and Structural Correlation of 24-Crown-8/Protonated Tryptophan and 24-Crown 8/Protonated Serine Noncovalent Complexes in the Gas Phase vs in Solution: Quantum Chemical Analysis. ACS OMEGA 2024; 9:23793-23801. [PMID: 38854571 PMCID: PMC11154897 DOI: 10.1021/acsomega.4c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
We investigate the structures of 24-crown-8/H+/l-tryptophan (CR/TrpH+) and 24-crown-8/H+/l-serine (CR/SerH+) noncovalent host-guest complex both in the gas phase and in an aqueous solution by quantum chemical methods. The Gibbs free energies of the complex in the two phases are calculated to determine the thermodynamically most favorable conformer in each phase. Our predictions indicate that both the carboxyl and the ammonium in CR/TrpH+ and the ammonium in the CR/SerH+ complexes in the lowest Gibbs free energy configurations form hydrogen bonds (H-bonds) with the CR host in the gas phase, while the conformer with the "naked" (devoid of H-bond with the CR host) -CO2H (and/or -OH) is much less favorable (Gibbs free energy higher by >3.6 kcal/mol). In the solution phase, however, a "thermodynamic reversal" occurs, making the higher Gibbs free energy gas-phase CR/TrpH+ and CR/SerH+ conformers thermodynamically more favorable under the influence of solvent molecules. Consequently, the global minimum Gibbs free energy structure in solution is structurally correlated with the thermodynamically much less gas-phase conformer. Discussions are provided concerning the possibility of elucidating host-guest-solvent interactions in solution from the gas-phase host-guest configurations in molecular detail.
Collapse
Affiliation(s)
- Young-Ho Oh
- Department
of Chemistry, Konkuk University, Seoul 05029, Republic of Korea
- Department
of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea
| | - So Yeon Lee
- Department
of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Xianglei Kong
- State
Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center
for New Organic Matter, and Tianjin Key Laboratory of Biosensing and
Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han Bin Oh
- Department
of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Sungyul Lee
- Department
of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
2
|
Kou M, Oh YH, Lee S, Kong X. Distinguishing gas phase lactose and lactulose complexed with sodiated L-arginine by IRMPD spectroscopy and DFT calculations. Phys Chem Chem Phys 2023; 25:25116-25121. [PMID: 37676638 DOI: 10.1039/d3cp03406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We present the origin of the observed differentiation of lactose and lactulose achieved by complexation with sodiated L-arginine (ArgNa+). We find that the infrared multiphoton dissociation (IRMPD) bands in 3600-3650 and >3650 cm-1 regimes for gas phase lactose and lactulose, respectively, vanish when forming host-guest complexes with ArgNa+. We interpret these differences in the IRMPD spectra by scrutinizing the interactions between the functional groups (guanidium, -CO2-Na+) in ArgNa+ and -OHs in lactose/lactulose. Our calculated structures and infrared spectra of lactose/ArgNa+ and lactulose/ArgNa+ host-guest pairs indicate that the functional groups interact with the low- and high-frequency -OH stretch modes of lactose and lactulose, respectively, in the 3600-3720 cm-1 window.
Collapse
Affiliation(s)
- Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Young-Ho Oh
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Republic of Korea.
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
4
|
Dinesan H, Kumar SS. Laser-Induced Fluorescence (LIF) Spectroscopy of Trapped Molecular Ions in the Gas Phase. APPLIED SPECTROSCOPY 2022; 76:1393-1411. [PMID: 36263923 DOI: 10.1177/00037028221120830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This review focuses on the laser-induced fluorescence (LIF) spectroscopy of trapped gas-phase molecular ions, a developing field of research. Following a brief description of the theory and experimental approaches employed in general for fluorescence spectroscopy, the review summarizes the current state-of-the-art intrinsic fluorescence measurement techniques employed for gas-phase ions. Whereas the LIF spectroscopy of condensed matter systems is a well-developed area of research, the instrumentation used for such studies is not directly applicable to gas-phase ions. However, some measurement schemes employed in condensed-phase experiments could be highly beneficial for gas-phase investigations. We have included a brief discussion on some of these techniques as well. Quadrupole ion traps are commonly used for spatial confinement of ions in the ion-trap-based LIF. One of the main challenges involved in such experiments is the poor signal-to-noise ratio (SNR) arising due to weak gas-phase fluorescence emission, high background noise, and small solid angle for the fluorescence collection optics. The experimental approaches based on the integrated high-finesse optical cavities employed for the condensed-phase measurements provide a better (typically an order of magnitude more) SNR in the detected fluorescence than the single-pass detection schemes. Another key to improving the SNR is to exploit the maximum solid angle of light collection by choosing high numerical aperture (NA) collection optics. A combination of these two approaches integrated with ion traps could transmogrify this field, allowing one to study even weak fluorescence emission from gas-phase molecular ions. The review concludes by discussing the scope of the advances in the LIF instrumentation for detailed spectral characterization of fluorophores of weak gas-phase fluorescence emission, considering fluorescein as one example.
Collapse
Affiliation(s)
- Hemanth Dinesan
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - S Sunil Kumar
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
5
|
Shu Y, Gao J, Wang C, Yin Y. Novel Fluorescent Polyurethane Coating on Fabric with Acid‐Base Indicating Function in Solution. ChemistrySelect 2022. [DOI: 10.1002/slct.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yihu Shu
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education School of Textile Science and Engineering Jiangnan University 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Jian Gao
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education School of Textile Science and Engineering Jiangnan University 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Chaoxia Wang
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education School of Textile Science and Engineering Jiangnan University 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Yunjie Yin
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education School of Textile Science and Engineering Jiangnan University 1800 Lihu Road Wuxi 214122 People's Republic of China
| |
Collapse
|
6
|
Unveiling host-guest-solvent interactions in solution by identifying highly unstable host-guest configurations in thermal non-equilibrium gas phase. Sci Rep 2022; 12:8169. [PMID: 35581255 PMCID: PMC9114120 DOI: 10.1038/s41598-022-12226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
We propose a novel scheme of examining the host-guest-solvent interactions in solution from their gas phase structures. By adopting the permethylated β-cyclodextrin (perm β-CD)-protonated L-Lysine non-covalent complex as a prototypical system, we present the infrared multiple photon dissociation (IRMPD) spectrum of the gas phase complex produced by electrospray ionization technique. In order to elucidate the structure of perm β-CD)/LysH+ complex in the gas phase, we carry out quantum chemical calculations to assign the two strong peaks at 3,340 and 3,560 cm-1 in the IRMPD spectrum, finding that the carboxyl forms loose hydrogen bonding with the perm β-CD, whereas the ammonium group of L-Lysine is away from the perm β-CD unit. By simulating the structures of perm β-CD/H+/L-Lysine complex in solution using the supramolecule/continuum model, we find that the extremely unstable gas phase structure corresponds to the most stable conformer in solution.
Collapse
|
7
|
Zhang L, Wang Y, Zheng F, Zhu D, Liang Y, Shi Q. Influence Exerted by the Solvent Effect on the Mobility Peak of 1,8-Naphthalic Anhydride in Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:457-462. [PMID: 35089717 DOI: 10.1021/jasms.1c00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The collision cross-section (CCS) values of ions determined by ion mobility-mass spectrometry (IM-MS) can be used to deduce the shape and size of the ions. For each compound, as well as its isomer or tautomer, a unique arrival time peak was obtained in extracted ion mobility (EIM) spectra, which corresponded to a specific CCS value. However, the generation of solvated ions by electrospray ionization (ESI) increases the number of mobility peaks, which makes the EIM spectra difficult to interpret. In this study, solvent clusters formed by acetonitrile and methanol around 1,8-naphthalic anhydride (1,8-NA) cations ([C12H6O3 + H]+1,8-NA) were investigated using trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOF MS). The effects of infusion flow rate, nebulizer gas pressure, drying gas rate, and drying gas temperature on the formation of solvent clusters from acetonitrile and methanolic solution were systematically studied. The formation of solvent clusters was observed with infusion flow rates increased, which was manifested by the larger experimental CCS values of [C12H6O3 + H]+1,8-NA. Acetonitrile tended to form solvent clusters around ions more readily than methanol. These solvent clusters were stable enough to be detected by TIMS, but they cannot survive under ion activation conditions of mass spectrometry (MS). Increasing the nebulizer gas pressure seems to be a better way to eliminate the formation of solvent clusters in TIMS-TOF MS and give a "cleaner" EIM spectra. The current research demonstrates that more attention should be paid to the solvent effect on CCS values and their interpretation.
Collapse
Affiliation(s)
- Lingzhi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Fang Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Di Zhu
- College of Science, China University of Petroleum, Beijing 102249, P.R. China
| | - Yongmei Liang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| |
Collapse
|
8
|
Zhou P, Tang Z, Li P, Liu J. Unraveling the Mechanism for Tuning the Fluorescence of Fluorescein Derivatives: The Role of the Conical Intersection and nπ* State. J Phys Chem Lett 2021; 12:6478-6485. [PMID: 34240884 DOI: 10.1021/acs.jpclett.1c01774] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although a large number of fluorescein derivatives have been developed and applied in many different fields, the general mechanisms for tuning the fluorescence of fluorescein derivatives still remain uncovered. Herein, we found that the fluorescence quenching of neutral form of fluorescein derivatives in acidic medium resulted from a dark nπ* state, whereas the fluorescence of the anionic form of fluorescein derivatives in the gas phase and alkaline solutions was tuned by minimal energy conical intersection (MECI). The formation of MECI involved significant rotation of benzene ring and flip-flop motion of xanthene moiety, which would be restricted by intermolecular hydrogen bonding and lowering temperature. The energy barrier for reaching MECI depended on the substituents in the benzene moiety in accordance with experimentally observed substituent effects. These unprecedented mechanisms would lead to a recognition of fluorescein derivatives and could provide a correct and instructive design strategy for further developing new fluorescein derivatives.
Collapse
Affiliation(s)
- Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | | | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, Liaoning China
| |
Collapse
|
9
|
Kjær C, Hansson RF, Hedberg C, Jensen F, Jensen HH, Nielsen SB. Gas-phase action and fluorescence spectroscopy of mass-selected fluorescein monoanions and two derivatives. Phys Chem Chem Phys 2020; 22:9210-9215. [PMID: 32227053 DOI: 10.1039/d0cp00453g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gaseous fluorescein monoanions are weakly fluorescent; they display a broad fluorescence spectrum and a large Stokes shift. This contrasts with the situation in aqueous solution. One explanation of the intriguing behavior in vacuo is based on internal proton transfer from the pendant carboxyphenyl group to one of the xanthene oxygens in the excited state; another that rotation of the carboxyphenyl group relative to the xanthene leads to a partial charge transfer from one chromophore (xanthene) to the other (carboxyphenyl) when the π orbitals start to overlap. To shed light on the mechanism at play, we synthesized two fluorescein derivatives where the carboxylic acid group is replaced with either an ester or a tertiary amide functionality and explored their gas-phase ion fluorescence using the home-built LUminescence iNstrument in Aarhus (LUNA) setup. Results on the fluorescein methyl ester that has no acidic proton clearly disprove the former explanation: The spectrum remains broad, and the band center (at 605 nm) is shifted even more to the red than that of fluorescein (590 nm). Experiments on the other variant that contains a piperidino amide are also in favor of the second explanation as here the piperidino already causes the dihedral angle between the planes defining the xanthene and the benzene ring to be less than 90° in the ground state (i.e., 63°), according to density functional theory calculations. As a result of the closer similarity between the ground-state and excited-state structures, the fluorescence spectrum is narrower than those of the other two ions, and the band maximum is further to the blue (575 nm). In accordance with a more delocalized ground state of the amide derivative, action spectra associated with photoinduced dissociation recorded at another setup show that the absorption-band maximum for the amide derivative is redshifted compared to that of fluorescein (538 nm vs. 525 nm).
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | | | - Frank Jensen
- Department of Chemistry, Aarhus University, Denmark
| | | | | |
Collapse
|
10
|
Mchedlov-Petrossyan NO, Cheipesh TA, Shekhovtsov SV, Ushakova EV, Roshal AD, Omelchenko IV. Aminofluoresceins Versus Fluorescein: Ascertained New Unusual Features of Tautomerism and Dissociation of Hydroxyxanthene Dyes in Solution. J Phys Chem A 2019; 123:8845-8859. [PMID: 31539249 DOI: 10.1021/acs.jpca.9b05810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Within the course of this spectroscopic research, we revealed novel features of the protolytic behavior, which extend the knowledge of the chemistry of xanthene dyes and rationalize the utilization of these compounds. In addition to the well-known tautomerism of the molecular form, H2R, of fluorescein dyes, new aspects of tautomeric transformation of anions are disclosed. First, for the dyes bearing the substituents in the phthalic acid residue, 4'- and 5'-aminofluoresceins and 4'-fluorescein isothiocyanate, the monoanion HR- exists in non-hydrogen-bond donor solvents not only as a tautomer with the ionized carboxylic and nonionized OH group but also as a "phenolate" ion with a nonionized COOH group. Such state of HR- ions is typical for dyes bearing halogen atoms or NO2 groups in the xanthene moiety but was not observed until now in the case of substitution in the phthalic residue. Second, the possibility of the existence of the HR- species in DMSO in the form of colorless lactone is deduced for the 5'-aminofluorescein using the visible and infrared spectra. This results in a dramatic difference in medium effects. For instance, whereas for fluorescein in DMSO, the inversion of the stepwise ionization constants takes place and the Ka1/Ka2 value equals 0.08, the same ratio for 5'-aminofluorescein is as high as ∼800. In addition, the pKa values of sulfonefluorescein, erythrosin, methyl ether of fluorescein, and phenol red were obtained to verify the acidity scale in DMSO and to support the detailed scheme of protolytic equilibria of fluorescein dyes.
Collapse
Affiliation(s)
| | - Tatyana A Cheipesh
- Department of Physical Chemistry , V. N. Karazin Kharkov National University , Kharkov 61022 , Ukraine
| | - Sergey V Shekhovtsov
- Department of Physical Chemistry , V. N. Karazin Kharkov National University , Kharkov 61022 , Ukraine
| | - Elena V Ushakova
- Department of Physical Chemistry , V. N. Karazin Kharkov National University , Kharkov 61022 , Ukraine
| | - Alexander D Roshal
- Department of Physical Chemistry , V. N. Karazin Kharkov National University , Kharkov 61022 , Ukraine
| | - Iryna V Omelchenko
- Institute for Single Crystals (SSI) , 60 Nauka Avenue , Kharkov 61001 , Ukraine
| |
Collapse
|
11
|
Kung JCK, Forman A, Jockusch RA. The effect of methylation on the intrinsic photophysical properties of simple rhodamines. Phys Chem Chem Phys 2019; 21:10261-10271. [DOI: 10.1039/c9cp00730j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gas-phase studies of progressively methylated rhodamines display unexpected photophysical trends that are obscured in solution, revealing key solvent effects.
Collapse
Affiliation(s)
| | - Adam Forman
- Department of Chemistry, University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
12
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
13
|
Kjær C, Brøndsted Nielsen S, Stockett MH. Sibling rivalry: intrinsic luminescence from two xanthene dye monoanions, resorufin and fluorescein, provides evidence for excited-state proton transfer in the latter. Phys Chem Chem Phys 2017; 19:24440-24444. [DOI: 10.1039/c7cp04689h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited-state proton transfer in gas-phase fluorescein monoanions results in a broad, featureless emission band and a large Stokes shift compared to resorufin, which shares the same xanthene core structure.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy
- Aarhus University
- Denmark
| | | | | |
Collapse
|
14
|
Imanbaew D, Gelin MF, Riehn C. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043211. [PMID: 27376104 PMCID: PMC4902822 DOI: 10.1063/1.4953367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/24/2016] [Indexed: 05/14/2023]
Abstract
Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures.
Collapse
Affiliation(s)
- Dimitri Imanbaew
- Fachbereich Chemie, Technische Universität Kaiserslautern , Erwin-Schrödinger-Str. 52-54, D-67663 Kaiserslautern, Germany
| | - Maxim F Gelin
- Fakultät für Chemie, TU München , Lichtenbergstraße 4, D-85747 Garching, Germany
| | | |
Collapse
|
15
|
Daly S, Kulesza A, Knight G, MacAleese L, Antoine R, Dugourd P. The Gas-Phase Photophysics of Eosin Y and its Maleimide Conjugate. J Phys Chem A 2016; 120:3484-90. [DOI: 10.1021/acs.jpca.6b01075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven Daly
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Alexander Kulesza
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Geoffrey Knight
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
16
|
Mchedlov-Petrossyan NO, Cheipesh TA, Shekhovtsov SV, Redko AN, Rybachenko VI, Omelchenko IV, Shishkin OV. Ionization and tautomerism of methyl fluorescein and related dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:151-161. [PMID: 26037500 DOI: 10.1016/j.saa.2015.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
The protolytic equilibrium of methyl ether of fluorescein is studied in water, aqueous ethanol, and in other solvents. The constants of the two-step dissociation are determined by spectrophotometry. In water, the fractions of the zwitterionic, quinonoid, and lactonic tautomes are correspondingly 11%, 6%, and 83%, as deduced from the UV-visible spectra. Corresponding study of the ionization of the methyl ether ester of fluorescein, fluorescein ethyl ester, and sulfonefluorescein allows testing the correction of the attribution of the microscopic dissociation constants of methoxy fluorescein. The results of nuclear magnetic resonance and infrared spectroscopy, as well as the X-ray analysis confirm the predomination of the lactonic structure of the molecular species in solid state and in DMSO. Contrary to it, the spectroscopic studies in both hydrogen-donor bond (HDB) and non-HBD solvents confirm that the presence of lactonic monoanion is atypical for the dye under study and, with high probability, also for the mother compound fluorescein.
Collapse
Affiliation(s)
| | - Tatyana A Cheipesh
- Department of Physical Chemistry, Kharkov V. Karazin National University, Kharkov 61022, Ukraine
| | - Sergey V Shekhovtsov
- Department of Physical Chemistry, Kharkov V. Karazin National University, Kharkov 61022, Ukraine
| | - Andrey N Redko
- Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Science of Ukraine, Donetsk 83114, Ukraine
| | - Vladimir I Rybachenko
- Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Science of Ukraine, Donetsk 83114, Ukraine
| | - Irina V Omelchenko
- Institute for Single Crystals, National Academy of Science of Ukraine, Kharkov 61072, Ukraine
| | - Oleg V Shishkin
- Institute for Single Crystals, National Academy of Science of Ukraine, Kharkov 61072, Ukraine
| |
Collapse
|
17
|
Horke DA, Chatterley AS, Bull JN, Verlet JRR. Time-Resolved Photodetachment Anisotropy: Gas-Phase Rotational and Vibrational Dynamics of the Fluorescein Anion. J Phys Chem Lett 2015; 6:189-94. [PMID: 26263111 DOI: 10.1021/jz5022526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The photoelectron signal of the singly deprotonated fluorescein anion is found to be highly dependent on the relative polarization between pump and probe pulses, and time-resolved photodetachment anisotropy (TR-PA) is developed as a probe of the rotational dynamics of the chromophore. The total photoelectron signal shows both rotational and vibrational wavepacket dynamics, and we demonstrate how TR-PA can readily disentangle these dynamical processes. TR-PA in fluorescein presents specific opportunities for its development as a probe for rotational dynamics in large biomolecules as fluorescein derivatives are commonly incorporated in complex biomolecules and have been used extensively in time-resolved fluorescence anisotropy measurements, to which TR-PA is a gas-phase analogue.
Collapse
Affiliation(s)
- Daniel A Horke
- †Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Adam S Chatterley
- ‡Ultrafast X-ray Science Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - James N Bull
- §Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- §Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
18
|
Lebed AV, Biryukov AV, Mchedlov-Petrossyan NO. A Quantum-Chemical Study of Tautomeric Equilibria of Fluorescein Dyes in DMSO. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Yao H, Jockusch RA. Fluorescence and Electronic Action Spectroscopy of Mass-Selected Gas-Phase Fluorescein, 2′,7′-Dichlorofluorescein, and 2′,7′-Difluorofluorescein Ions. J Phys Chem A 2013; 117:1351-9. [DOI: 10.1021/jp309767f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huihui Yao
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rebecca A. Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Schröder D, Buděšínský M, Roithová J. Deprotonation of p-Hydroxybenzoic Acid: Does Electrospray Ionization Sample Solution or Gas-Phase Structures? J Am Chem Soc 2012; 134:15897-905. [DOI: 10.1021/ja3060589] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Detlef Schröder
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2,
16610 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2,
16610 Prague 6, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry,
Faculty of Sciences, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|