1
|
Qorbani N, Jalili AH, Adib B. Anomalously high solubility behavior of methanethiol in alkylimidazolium–based ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Herbert JM, Carter-Fenk K. Electrostatics, Charge Transfer, and the Nature of the Halide-Water Hydrogen Bond. J Phys Chem A 2021; 125:1243-1256. [PMID: 33502859 DOI: 10.1021/acs.jpca.0c11356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Binary halide-water complexes X-(H2O) are examined by means of symmetry-adapted perturbation theory, using charge-constrained promolecular reference densities to extract a meaningful charge-transfer component from the induction energy. As is known, the X-(H2O) potential energy surface (for X = F, Cl, Br, or I) is characterized by symmetric left and right hydrogen bonds separated by a C2v-symmetric saddle point, with a tunneling barrier height that is <2 kcal/mol except in the case of F-(H2O). Our analysis demonstrates that the charge-transfer energy is correspondingly small (<2 kcal/mol except for X = F), considerably smaller than the electrostatic interaction energy. Nevertheless, charge transfer plays a crucial role determining the conformational preferences of X-(H2O) and provides a driving force for the formation of quasi-linear X··· H-O hydrogen bonds. Charge-transfer energies correlate well with measured O-H vibrational redshifts for the halide-water complexes and also for OH-(H2O) and NO2-(H2O), providing some indication of a general mechanism.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
van der Lubbe SC, Haim A, van Heesch T, Fonseca Guerra C. Tuning the Binding Strength of Even and Uneven Hydrogen-Bonded Arrays with Remote Substituents. J Phys Chem A 2020; 124:9451-9463. [PMID: 33054218 PMCID: PMC7667637 DOI: 10.1021/acs.jpca.0c07815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
Abstract
We investigated the tunability of hydrogen bond strength by altering the charge accumulation around the frontier atoms with remote substituents. For pyridine···H2O with NH2 and CN substituted at different positions on pyridine, we find that the electron-withdrawing CN group decreases the negative charge accumulation around the frontier atom N, resulting in weakening of the hydrogen bond, whereas the electron-donating NH2 group increases the charge accumulation around N, resulting in strengthening of the hydrogen bond. By applying these design principles on DDAA-AADD, DADA-ADAD, DAA-ADD, and ADA-DAD hydrogen-bonded dimers, we find that the effect of the substituent is delocalized over the whole molecular system. As a consequence, systems with an equal number of hydrogen bond donor (D) and acceptor (A) atoms are not tunable in a predictable way because of cancellation of counteracting strengthening and weakening effects. Furthermore, we show that the position of the substituent and long-range electrostatics can play an important role as well. Overall, the design principles presented in this work are suitable for monomers with an unequal number of donor and acceptor atoms and can be exploited to tune the binding strength of supramolecular building blocks.
Collapse
Affiliation(s)
- Stephanie
C. C. van der Lubbe
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Anissa Haim
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Thor van Heesch
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Amsterdam Center of Multiscale
Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2333 CD Leiden, The Netherlands
| |
Collapse
|
4
|
Alkorta I, Elguero J, Popelier PL. A relative energy gradient (REG) study of the nitrogen inversion in N-substituted aziridines. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kumar N, Naik PK, Banerjee T. Molecular modeling insights in the extraction of benzene from hydrocarbon stream using deep eutectic solvent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Singh A, Sahoo DK, Sethi SK, Jena S, Biswal HS. Nature and Strength of the Inner-Core H⋅⋅⋅H Interactions in Porphyrinoids. Chemphyschem 2017; 18:3625-3633. [DOI: 10.1002/cphc.201700742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ankit Singh
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Srikant Kumar Sethi
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Subhrakant Jena
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
7
|
Bene JED, Alkorta I, Elguero J. Properties of cationic pnicogen-bonded complexes F4-nHnP+:N-base with H–P···N linear andn= 1–4. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1086835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Del Bene JE, Alkorta I, Elguero J. Properties of Cationic Pnicogen-Bonded Complexes F4–nHnP+:N-Base with F–P···N Linear and n = 0–3. J Phys Chem A 2015; 119:5853-64. [DOI: 10.1021/acs.jpca.5b03035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la
Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la
Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
9
|
Mata I, Molins E, Alkorta I, Espinosa E. The paradox of hydrogen-bonded anion-anion aggregates in oxoanions: a fundamental electrostatic problem explained in terms of electrophilic···nucleophilic interactions. J Phys Chem A 2014; 119:183-94. [PMID: 25495236 DOI: 10.1021/jp510198g] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A theoretical study of anionic complexes formed by two partly deprotonated oxoacids joined by hydrogen bonds has been carried out at the MP2 computational level. In spite of the ionic repulsion, local energy minima are found both in the gas phase and in aqueous solution. Electrostatic potential and electron density topologies, and the comparison with neutral complexes formed by oxoacids, reveal that the ionization has no significant effect on the properties of the hydrogen bonds. The stability of the complexes in the gas phase is explained by attractive forces localized in a volume situated in the hydrogen bond and defined as the electrostatic attraction region (EAR) and determined by the topological analyses of the electron density and the electrostatic potential, and by the electric field lines. In solution, the strong anionic repulsion is mostly screened by the effect of the surrounding polar solvent, which only leads to a weak destabilizing interaction in the hydrogen bond region and finally favors the overall stability of the complexes. The anion-anion complexes have been compared with the corresponding neutral ones (as salts or protonated forms), showing that EAR remains unchanged along the series.
Collapse
Affiliation(s)
- Ignasi Mata
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
10
|
Vu TH, Cable ML, Choukroun M, Hodyss R, Beauchamp P. Formation of a New Benzene–Ethane Co-Crystalline Structure Under Cryogenic Conditions. J Phys Chem A 2014; 118:4087-94. [DOI: 10.1021/jp501698j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuan Hoang Vu
- NASA Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, California 91109, United States
| | - Morgan L. Cable
- NASA Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, California 91109, United States
| | - Mathieu Choukroun
- NASA Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, California 91109, United States
| | - Robert Hodyss
- NASA Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, California 91109, United States
| | - Patricia Beauchamp
- NASA Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
11
|
Kirby IL, Brightwell M, Pitak MB, Wilson C, Coles SJ, Gale PA. Systematic experimental charge density analysis of anion receptor complexes. Phys Chem Chem Phys 2014; 16:10943-58. [DOI: 10.1039/c3cp54858a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first systematic electronic resolution study of a series of urea-based anion receptor complexes is presented and shows the binding strength to be greater for more basic anion–receptor pairs in the solid state.
Collapse
Affiliation(s)
| | | | | | - Claire Wilson
- Diamond Light Source
- Diamond House
- Harwell Science and Innovation Campus
- Didcot, UK
| | | | - Philip A. Gale
- Chemistry
- University of Southampton
- Southampton, UK
- Department of Chemistry
- Faculty of Science
| |
Collapse
|
12
|
Oliveira BGD. Structure, energy, vibrational spectrum, and Bader's analysis of π⋯H hydrogen bonds and H−δ⋯H+δdihydrogen bonds. Phys Chem Chem Phys 2013; 15:37-79. [DOI: 10.1039/c2cp41749a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Mata I, Alkorta I, Molins E, Espinosa E. Tracing environment effects that influence the stability of anion–anion complexes: The case of phosphate–phosphate interactions. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.10.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Gordesli FP, Abu-Lail NI. Combined Poisson and soft-particle DLVO analysis of the specific and nonspecific adhesion forces measured between L. monocytogenes grown at various temperatures and silicon nitride. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10089-10098. [PMID: 22917240 DOI: 10.1021/es300653w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Adhesion forces between pathogenic L. monocytogenes EGDe and silicon nitride (Si(3)N(4)) were measured using atomic force microscopy (AFM) under water and at room temperature for cells grown at five different temperatures (10, 20, 30, 37, and 40 °C). Adhesion forces were then decoupled into specific (hydrogen bonding) and nonspecific (electrostatic and Lifshitz-van der Waals) force components using Poisson statistical analysis. The strongest specific and nonspecific attraction forces were observed for cells grown at 30 °C, compared to those observed for cells grown at higher or lower temperatures, respectively. By combining the results of Poisson analysis with the results obtained through soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis, the contributions of the Lifshitz-van der Waals and electrostatic forces to the overall nonspecific interaction forces were determined. Our results showed that the Lifshitz-van der Waals attraction forces dominated the total nonspecific adhesion forces for all investigated thermal conditions. However, irrespective of the temperature of growth investigated, hydrogen bonding forces were always stronger than the nonspecific forces. Finally, by combining Poisson analysis with soft-particle analysis of DLVO forces, the closest separation distances where the irreversible bacterial adhesion takes place can be determined relatively easily. For all investigated thermal conditions, the closest separation distances were <1 nm.
Collapse
Affiliation(s)
- F Pinar Gordesli
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-2710, United States
| | | |
Collapse
|
15
|
Mata I, Alkorta I, Molins E, Espinosa E. Electrostatics at the Origin of the Stability of Phosphate-Phosphate Complexes Locked by Hydrogen Bonds. Chemphyschem 2012; 13:1421-4. [DOI: 10.1002/cphc.201200068] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Indexed: 11/10/2022]
|