1
|
Odenkirk MT, Zhang G, Marty MT. Do Nanodisc Assembly Conditions Affect Natural Lipid Uptake? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2006-2015. [PMID: 37524089 PMCID: PMC10528108 DOI: 10.1021/jasms.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lipids play critical roles in modulating membrane protein structure, interactions, and activity. Nanodiscs provide a tunable membrane mimetic that can model these endogenous protein-lipid interactions in a nanoscale lipid bilayer. However, most studies of membrane proteins with nanodiscs use simple synthetic lipids that lack the headgroup and fatty acyl diversity of natural extracts. Prior research has successfully used natural lipid extracts in nanodiscs that more accurately mimic natural environments, but it is not clear how nanodisc assembly may bias the incorporated lipid profiles. Here, we applied lipidomics to investigate how nanodisc assembly conditions affect the profile of natural lipids in nanodiscs. Specifically, we tested the effects of assembly temperature, nanodisc size, and lipidome extract complexity. Globally, our analysis demonstrates that the lipids profiles are largely unaffected by nanodisc assembly conditions. However, a few notable changes emerged within individual lipids and lipid classes, such as a differential incorporation of cardiolipin and phosphatidylglycerol lipids from the E. coli polar lipid extract at different temperatures. Conversely, some classes of brain lipids were affected by nanodisc size at higher temperatures. Collectively, these data enable the application of nanodiscs to study protein-lipid interactions in complex lipid environments.
Collapse
Affiliation(s)
- Melanie T. Odenkirk
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
2
|
Manna M, Javanainen M, Monne HMS, Gabius HJ, Rog T, Vattulainen I. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:870-878. [PMID: 28143757 DOI: 10.1016/j.bbamem.2017.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Hector Martinez-Seara Monne
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610, Prague, Czech Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University, D-80539 Munchen, Germany
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Gu RX, Ingólfsson HI, de Vries AH, Marrink SJ, Tieleman DP. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J Phys Chem B 2016; 121:3262-3275. [PMID: 27610460 PMCID: PMC5402298 DOI: 10.1021/acs.jpcb.6b07142] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
4
|
Das C, Olmsted PD. The physics of stratum corneum lipid membranes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0126. [PMID: 27298438 PMCID: PMC4920276 DOI: 10.1098/rsta.2015.0126] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 05/22/2023]
Abstract
The stratum corneum (SC), the outermost layer of skin, comprises rigid corneocytes (keratin-filled dead cells) in a specialized lipid matrix. The continuous lipid matrix provides the main barrier against uncontrolled water loss and invasion of external pathogens. Unlike all other biological lipid membranes (such as intracellular organelles and plasma membranes), molecules in the SC lipid matrix show small hydrophilic groups and large variability in the length of the alkyl tails and in the numbers and positions of groups that are capable of forming hydrogen bonds. Molecular simulations provide a route for systematically probing the effects of each of these differences separately. In this article, we present the results from atomistic molecular dynamics of selected lipid bilayers and multi-layers to probe the effect of these polydispersities. We address the nature of the tail packing in the gel-like phase, the hydrogen bond network among head groups, the bending moduli expected for leaflets comprising SC lipids and the conformation of very long ceramide lipids in multi-bilayer lipid assemblies.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Chinmay Das
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Peter D Olmsted
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
5
|
Aβ1-25-Derived Sphingolipid-Domain Tracer Peptide SBD Interacts with Membrane Ganglioside Clusters via a Coil-Helix-Coil Motif. Int J Mol Sci 2015; 16:26318-32. [PMID: 26540054 PMCID: PMC4661814 DOI: 10.3390/ijms161125955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
The Amyloid-β (Aβ)-derived, sphingolipid binding domain (SBD) peptide is a fluorescently tagged probe used to trace the diffusion behavior of sphingolipid-containing microdomains in cell membranes through binding to a constellation of glycosphingolipids, sphingomyelin, and cholesterol. However, the molecular details of the binding mechanism between SBD and plasma membrane domains remain unclear. Here, to investigate how the peptide recognizes the lipid surface at an atomically detailed level, SBD peptides in the environment of raft-like bilayers were examined in micro-seconds-long molecular dynamics simulations. We found that SBD adopted a coil-helix-coil structural motif, which binds to multiple GT1b gangliosides via salt bridges and CH–π interactions. Our simulation results demonstrate that the CH–π and electrostatic forces between SBD monomers and GT1b gangliosides clusters are the main driving forces in the binding process. The presence of the fluorescent dye and linker molecules do not change the binding mechanism of SBD probes with gangliosides, which involves the helix-turn-helix structural motif that was suggested to constitute a glycolipid binding domain common to some sphingolipid interacting proteins, including HIV gp120, prion, and Aβ.
Collapse
|
6
|
Molecular simulations of glycolipids: Towards mammalian cell membrane models. Biochimie 2015; 120:105-9. [PMID: 26427555 PMCID: PMC4710579 DOI: 10.1016/j.biochi.2015.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022]
Abstract
Glycolipids are key components of mammalian cell membranes, influencing a diverse range of cellular functions. For example, a number of receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR), are allosterically regulated by the glycolipid monosialodihexosylganglioside (GM3). Recent advances in molecular dynamics methods, especially the development of coarse-grained models, have enabled simulations of increasingly complex models of cell membranes. We demonstrate these methodological developments via a case study of a coarse-grained model for the ganglioside GM3. This glycolipid is included in simulations of a mixed lipid bilayer model reflecting the compositional complexity of a mammalian cell membrane. The resultant membrane model is used to simulate the interactions of GM3 with the transmembrane domain of the EGFR. We review recent progress in molecular dynamics simulations of glycolipids. A coarse-grained model of the ganglioside GM3 is described. The GM3 model is used in coarse-grained simulations of a mammalian cell membrane. We describe the interactions of GM3 with the transmembrane domain of the EGFR.
Collapse
|
7
|
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1319-30. [PMID: 25749153 DOI: 10.1016/j.bbamem.2015.02.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Djurre H de Jong
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Santinha D, Ferreira-Fernandes E, Melo T, Silva EMP, Maciel E, Fardilha M, Domingues P, Domingues MRM. Evaluation of the photooxidation of galactosyl- and lactosylceramide by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2275-2284. [PMID: 25279740 DOI: 10.1002/rcm.7020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/18/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Glycosphingolipids are important lipid molecules namely as constituents of the plasma membrane organized in lipid rafts, in signal transduction, and cell-cell communication. Although many human diseases are associated with oxidative stress and lipid oxidation, a link between oxidative stress and modification of glycosphingolipids has never been addressed. METHODS In this study, the structural changes caused by UVA-induced photooxidation of galactosyl- (GalCer) and lactosylceramide (LacCer) molecular species were studied by electrospray ionization mass spectrometry (ESI-MS and MS/MS), using a quadrupole time-of-flight (QTOF) mass spectrometer and high-performance liquid chromatography/tandem mass spectrometry with a C5 stationary phase (C5 HPLC/MS/MS) using a linear ion trap. RESULTS ESI-MS spectra of GalCer and LacCer after photooxidation showed new ions with a mass shift of +32 Da when compared with the ions of the non-modified glycosphingolipids. These new species were assigned as hydroperoxyl derivatives, confirmed by HPLC/MS/MS and through FOX 2 assay. In the ESI-MS and LC/MS of lactosylceramide a new ion with lower m/z value, assigned as glucosylceramide (GlcCer) + 32 Da, was also detected and proposed to be formed due to oxidative cleavage of lactosyl moieties. ESI-MS/MS of the oxidized species allowed us to infer the presence of isomeric hydroperoxyl derivatives, with the hydroperoxyl moiety either linked to the sphingosine backbone or in the unsaturated acyl chain. Oxidation in the sugar moieties was observed in the case of LacCer, suggesting an oxidation via radical reactive oxygen species that can induce the oxidative cleavage of the lactosyl moiety. CONCLUSIONS This study shows that glycosphingolipids are prone to oxidation and the identified mass spectrometry fingerprint of oxidized galactosyl- and lactosylceramide species will support their future identification in lipidomic studies of biological samples under oxidative conditions.
Collapse
Affiliation(s)
- Deolinda Santinha
- Mass Spectrometry Centre, UI-QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1130-45. [DOI: 10.1016/j.bbalip.2013.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022]
|
11
|
Bennett WD, Tieleman DP. Computer simulations of lipid membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1765-76. [DOI: 10.1016/j.bbamem.2013.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
12
|
Rabinovich AL, Lyubartsev AP. Computer simulation of lipid membranes: Methodology and achievements. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213070060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
López CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ. Martini Force Field Parameters for Glycolipids. J Chem Theory Comput 2013; 9:1694-708. [DOI: 10.1021/ct3009655] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- César A. López
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Zofie Sovova
- Faculty
of Science, University
of South Bohemia, Czech Republic, and Institute of Nanobiology and
Structural Biology GCRC ASCR, v.v.i. Nove Hrady, Czech Republic
| | - Floris J. van Eerden
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Alex H. de Vries
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| |
Collapse
|