1
|
Nicolella Z, Okamoto Y, Watanabe NM, Thompson GL, Umakoshi H. Significance of in situ quantitative membrane property-morphology relation (QmPMR) analysis. SOFT MATTER 2024; 20:4935-4949. [PMID: 38873752 DOI: 10.1039/d4sm00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Deformation of the cell membrane is well understood from the viewpoint of protein interactions and free energy balance. However, the various dynamic properties of the membrane, such as lipid packing and hydrophobicity, and their relationship with cell membrane deformation are unknown. Therefore, the deformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid (OA) giant unilamellar vesicles (GUVs) was induced by heating and cooling cycles, and time-lapse analysis was conducted based on the membrane hydrophobicity and physical parameters of "single-parent" and "daughter" vesicles. Fluorescence ratiometric analysis by simultaneous dual-wavelength detection revealed the variation of different hydrophilic GUVs and enabled inferences of the "daughter" vesicle composition and the "parent" membrane's local composition during deformation; the "daughter" vesicle composition of OA was lower than that of the "parents", and lateral movement of OA was the primary contributor to the formation of the "daughter" vesicles. Thus, our findings and the newly developed methodology, named in situ quantitative membrane property-morphology relation (QmPMR) analysis, would provide new insights into cell deformation and accelerate research on both deformation and its related events, such as budding and birthing.
Collapse
Affiliation(s)
- Zachary Nicolella
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Gary Lee Thompson
- Rowan University, Rowan Hall, Room 333 70 Sewell St., Ste. E Glassboro, NJ 08028, USA
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Morales-Martínez A, Zamorano-Carrillo A, Montes S, El-Hafidi M, Sánchez-Mendoza A, Soria-Castro E, Martínez-Lazcano JC, Martínez-Gopar PE, Ríos C, Pérez-Severiano F. Rich fatty acids diet of fish and olive oils modifies membrane properties in striatal rat synaptosomes. Nutr Neurosci 2021; 24:1-12. [PMID: 30822260 DOI: 10.1080/1028415x.2019.1584692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
3
|
Koehl NJ, Holm R, Kuentz M, Jannin V, Griffin BT. Exploring the Impact of Surfactant Type and Digestion: Highly Digestible Surfactants Improve Oral Bioavailability of Nilotinib. Mol Pharm 2020; 17:3202-3213. [PMID: 32649208 DOI: 10.1021/acs.molpharmaceut.0c00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The scientific rationale for selection of the surfactant type during oral formulation development requires an in-depth understanding of the interplay between surfactant characteristics and biopharmaceutical factors. Currently, however, there is a lack of comprehensive knowledge of how surfactant properties, such as hydrophilic-lipophilic balance (HLB), digestibility, and fatty acid (FA) chain length, translate into in vivo performance. In the present study, the relationship between surfactant properties, in vitro characteristics, and in vivo bioavailability was systematically evaluated. An in vitro lipolysis model was used to study the digestibility of a variety of nonionic surfactants. Eight surfactants and one surfactant mixture were selected for further analysis using the model poorly water-soluble drug nilotinib. In vitro lipolysis of all nilotinib formulations was performed, followed by an in vivo pharmacokinetic evaluation in rats. The in vitro lipolysis studies showed that medium-chain FA-based surfactants were more readily digested compared to long-chain surfactants. The in vivo study demonstrated that a Tween 20 formulation significantly enhanced the absolute bioavailability of nilotinib up to 5.2-fold relative to an aqueous suspension. In general, surfactants that were highly digestible in vitro tended to display higher bioavailability of nilotinib in vivo. The bioavailability may additionally be related to the FA chain length of digestible surfactants with an improved exposure in the case of medium-chain FA-based surfactants. There was no apparent relationship between the HLB value of surfactants and the in vivo bioavailability of nilotinib. The impact of this study's findings suggests that when designing surfactant-based formulations to enhance oral bioavailability of the poorly water-soluble drug nilotinib, highly digestible, medium chain-based surfactants are preferred. Additionally, for low-permeability drugs such as nilotinib, which is subject to efflux by intestinal P-glycoprotein, the biopharmaceutical effects of surfactants merit further consideration.
Collapse
Affiliation(s)
- Niklas J Koehl
- School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | | |
Collapse
|
4
|
The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget 2018; 7:86871-86888. [PMID: 27894086 PMCID: PMC5349960 DOI: 10.18632/oncotarget.13508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport.
Collapse
|
5
|
Jang EJ, Choi WR, Kim SY, Hong SS, Rhee I, Lee SJ, Choi SW, Choi HG, Lim SJ. 2-Hydroxyoleic acid-inserted liposomes as a multifunctional carrier of anticancer drugs. Drug Deliv 2017; 24:1587-1597. [PMID: 29029595 PMCID: PMC8241020 DOI: 10.1080/10717544.2017.1388452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
Studies have shown that insertion of oleic acid into lipid bilayers can modulate the membrane properties of liposomes so as to improve their function as drug carriers. Considering that 2-hydroxyoleic acid (2OHOA), a potential antitumor agent currently undergoing clinical trials, is a derivative of oleic acid, we explored the possibility of developing 2OHOA-inserted liposomes as a multifunctional carrier of antitumor drugs in the present study. The insertion of 2OHOA into lipid bilayers was confirmed by surface charge determination and differential scanning calorimetry. 2OHOA insertion greatly decreased the order of dimyristoylphosphatidylcholine packing, produced a nanosized (<100 nm) dispersion, and improved the colloidal stability of liposomes during storage. Moreover, 2OHOA-inserted liposome forms exhibited greater growth inhibitory activity against cancer cells compared with free 2OHOA, and the growth-inhibitory activity of liposomal 2OHOA was selective for tumor cells. 2OHOA insertion greatly increased the liposome-incorporated concentration of hydrophobic model drugs, including mitoxantrone, paclitaxel, and all-trans retinoic acid (ATRA). The in vitro anticancer activity of ATRA-incorporated/2OHOA-inserted liposomes was significantly higher than that of ATRA-incorporated conventional liposomes. In a B16-F10 melanoma syngeneic mouse model, the tumor growth rate was significantly delayed in mice treated with ATRA-incorporated/2OHOA-inserted liposomes compared with that in the control group. Immunohistochemical analyses revealed that the enhanced antitumor activity of ATRA-incorporated/2OHOA-inserted liposomes was due, at least in part, to increased induction of apoptosis. Collectively, our findings indicate that 2OHOA-inserted liposomes exhibit multiple advantages as antitumor drug carriers, including the ability to simultaneously deliver two anticancer drugs - 2OHOA and incorporated drug - to the tumor tissue.
Collapse
Affiliation(s)
- Eun-Ji Jang
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Woo Rim Choi
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soon-Seok Hong
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Inmoo Rhee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Immunotherapeutics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung Weon Choi
- Oral Oncology Clinic, Research Institute & Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kurniawan J, Suga K, Kuhl TL. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:211-217. [DOI: 10.1016/j.bbamem.2016.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 02/08/2023]
|
7
|
Hanson SM, Newstead S, Swartz KJ, Sansom MSP. Capsaicin interaction with TRPV1 channels in a lipid bilayer: molecular dynamics simulation. Biophys J 2016; 108:1425-1434. [PMID: 25809255 PMCID: PMC4375533 DOI: 10.1016/j.bpj.2015.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel also involved in pain sensation, and is the receptor for capsaicin, the active ingredient of hot chili peppers. The recent structures of TRPV1 revealed putative ligand density within the S1 to S4 voltage-sensor-like domain of the protein. However, questions remain regarding the dynamic role of the lipid bilayer in ligand binding to TRPV1. Molecular dynamics simulations were used to explore behavior of capsaicin in a 1-palmitoyl-2-oleoyl phosphatidylcholine bilayer and with the target S1–S4 transmembrane helices of TRPV1. Equilibrium simulations reveal a preferred interfacial localization for capsaicin. We also observed a capsaicin molecule flipping from the extracellular to the intracellular leaflet, and subsequently able to access the intracellular TRPV1 binding site. Calculation of the potential of mean force (i.e., free energy profile) of capsaicin along the bilayer normal confirms that it prefers an interfacial localization. The free energy profile indicates that there is a nontrivial but surmountable barrier to the flipping of capsaicin between opposing leaflets of the bilayer. Molecular dynamics of the S1–S4 transmembrane helices of the TRPV1 in a lipid bilayer confirm that Y511, known to be crucial to capsaicin binding, has a distribution along the bilayer normal similar to that of the aromatic group of capsaicin. Simulations were conducted of the TRPV1 S1–S4 transmembrane helices in the presence of capsaicin placed in the aqueous phase, in the lipid, or docked to the protein. No stable interaction between ligand and protein was seen for simulations initiated with capsaicin in the bilayer. However, interactions were seen between TRPV1 and capsaicin starting from the cytosolic aqueous phase, and capsaicin remained stable in the majority of simulations from the docked pose. We discuss the significance of capsaicin flipping from the extracellular to the intracellular leaflet and mechanisms of binding site access by capsaicin.
Collapse
Affiliation(s)
- Sonya M Hanson
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom; Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York; Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Teixeira RS, Cova TF, Silva SM, Oliveira R, do Vale MLC, Marques EF, Pais AA, Veiga FJ. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure–activity relationships, molecular dynamics and dermal delivery. Eur J Pharm Biopharm 2015; 93:205-13. [DOI: 10.1016/j.ejpb.2015.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 11/25/2022]
|
9
|
Janke JJ, Bennett WFD, Tieleman DP. Oleic acid phase behavior from molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10661-10667. [PMID: 25133680 DOI: 10.1021/la501962n] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fatty acid aggregation is important for a number of diverse applications: from origins of life research to industrial applications to health and disease. Experiments have characterized the phase behavior of oleic acid mixtures, but the molecular details are complex and hard to probe with many experiments. Coarse-grained molecular dynamics computer simulations and free energy calculations are used to model oleic acid aggregation. From random dispersions, we observe the aggregation of oleic acid monomers into micelles, vesicles, and oil phases, depending on the protonation state of the oleic acid head groups. Worm-like micelles are observed when all the oleic acid molecules are deprotonated and negatively charged. Vesicles form spontaneously if significant amounts of both neutral and negative oleic acid are present. Oil phases form when all the fatty acids are protonated and neutral. This behavior qualitatively matches experimental observations of oleic acid aggregation. To explain the observed phase behavior, we use umbrella sampling free energy calculations to determine the stability of individual monomers in aggregates compared to water. We find that both neutral and negative oleic acid molecules prefer larger aggregates, but neutral monomers prefer negatively charged aggregates and negative monomers prefer neutral aggregates. Both neutral and negative monomers are most stable in a DOPC bilayer, with implications on fatty acid adsorption and cellular membrane evolution. Although the CG model qualitatively reproduces oleic acid phase behavior, we show that an updated polarizable water model is needed to more accurately predict the shift in pKa for oleic acid in model bilayers.
Collapse
Affiliation(s)
- J Joel Janke
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
10
|
Peters GH, Werge M, Elf-Lind MN, Madsen JJ, Velardez GF, Westh P. Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study. Chem Phys Lipids 2014; 184:7-17. [PMID: 25159594 DOI: 10.1016/j.chemphyslip.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/15/2022]
Abstract
We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABA(neu)) and the osmolyte molecule glycerol (GOL) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. In agreement with previously published experimental data, we found the lowest membrane affinity for the charged molecules and a moderate affinity for zwitterionic and polar molecules. The affinity can be ranked as follows: ACH-GLU<<GABA<GLY<<GABA(neu)<<GOL. The latter three penetrated the bilayer at most with the deepest location being close to the glycerol backbone of the phospholipids. Even at that position, these solutes were noticeably hydrated and carried ∼30-80% of the bulk water along. The mobility of hydration water at the solute is also affected by the penetration into the bilayer. Two time scales of exchanging water molecules could be determined. In the bulk phase, the hydration layer contains ∼20% slow exchanging water molecules which increases 2-3 times as the solutes entered the bilayer. Our results indicate that there is no intermediate exchange of slow moving water molecules from the solutes to the lipid atoms and vice versa. Instead, the exchange relies on the reservoir of unbounded ("free") water molecules in the interfacial bilayer region. Results from the equilibrium simulations are in good agreement with the results from umbrella sampling simulations, which were conducted for the four naturally occurring NTs. Free energy profiles for ACH and GLU show a minimum of ∼2-3 kJ/mol close to the bilayer interface, while for GABA and GLY, a minimum of respectively ∼2 kJ/mol and ∼5 kJ/mol is observed when these NTs are located in the vicinity of the lipid glycerol backbone. The most important interaction of NTs with the bilayer is the charged amino group of NTs with the lipid phosphate group.
Collapse
Affiliation(s)
- Günther H Peters
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Mikkel Werge
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Jesper J Madsen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gustavo F Velardez
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Roskilde 4000, Denmark.
| |
Collapse
|
11
|
Teixeira RS, Cova TFGG, Silva SMC, Oliveira R, Araújo MJ, Marques EF, Pais AACC, Veiga FJB. Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics. Int J Pharm 2014; 474:212-22. [PMID: 25108047 DOI: 10.1016/j.ijpharm.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
The aim of this study is to investigate the efficacy of new, biocompatible, lysine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine hydrochloride, topically administered. Results show that this class of surfactants strongly influences permeation, especially in the case of the hydrophilic and ionized drug, ropivacaine hydrochloride, that is not easily administered through the stratum corneum. It is also seen that the selected permeation enhancers do not have significant deleterious effects on the skin structure. A cytotoxicity profile for each compound was established from cytotoxicity studies. Molecular dynamics simulation results provided a rationale for the experimental observations, introducing a mechanistic view of the action of the surfactants molecules upon lipid membranes.
Collapse
Affiliation(s)
- Raquel S Teixeira
- Pharmaceutical Technology Department, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia F G G Cova
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Sérgio M C Silva
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rita Oliveira
- Life Sciences Department, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Maria J Araújo
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alberto A C C Pais
- Life Sciences Department, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Francisco J B Veiga
- Pharmaceutical Technology Department, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
12
|
Khmelinskaia A, Ibarguren M, de Almeida RFM, López DJ, Paixão VA, Ahyayauch H, Goñi FM, Escribá PV. Changes in membrane organization upon spontaneous insertion of 2-hydroxylated unsaturated fatty acids in the lipid bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2117-2128. [PMID: 24490728 DOI: 10.1021/la403977f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes. The main effects of 2OHFAs are a decrease in lipid order, with a looser packing of the acyl chains, and a decreased dipole potential, regardless of the 2OHFAs' relative affinity for the lipid bilayer. The strongest effects are usually observed for 2-hydroxyarachidonic (C20:4) acid, and the weakest one, for 2-hydroxydocosahexaenoic acid (C22:6). In addition, 2OHFAs cause increased hydration, except in gel-phase membranes, which can be explained by the 2OHFA preference for membrane defects. Concerning the membrane dipole potential, the magnitude of the reduction induced by 2OHFAs was particularly marked in the liquid-ordered (lo) phase (cholesterol/sphingomyelin-rich) membranes, those where order reduction was the smallest, suggesting a disruption of cholesterol-sphingolipid interactions that are responsible for the large dipole potential in those membranes. Moreover, 2OHFA effects were larger than for both lo and ld phases separately in model membranes with liquid disordered (ld)/lo coexistence when both phases were present in significant amounts, possibly because of the facilitating effect of ld/lo domain interfaces. The specific and marked changes induced by 2OHFAs in several membrane properties suggest that the initial interaction with the membrane and subsequent reorganization might constitute an important step in their mechanisms of action.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Centro de Quimica e Bioquimica, DQB, Faculdade de Ciências da Universidade de Lisboa , Campo Grande, Ed. C8, 1749-016 Lisboa Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Piotto S, Concilio S, Bianchino E, Iannelli P, López DJ, Terés S, Ibarguren M, Barceló-Coblijn G, Martin ML, Guardiola-Serrano F, Alonso-Sande M, Funari SS, Busquets X, Escribá PV. Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1628-37. [PMID: 24412218 DOI: 10.1016/j.bbamem.2013.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 11/17/2022]
Abstract
The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Stefano Piotto
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy.
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - Erminia Bianchino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - Pio Iannelli
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - David J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Silvia Terés
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Gwendolyn Barceló-Coblijn
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maria Laura Martin
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - María Alonso-Sande
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Sérgio S Funari
- HASYLAB at Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| |
Collapse
|
14
|
Messersmith RE, Nusz GJ, Reed SM. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:26725-26733. [PMID: 25621096 PMCID: PMC4300962 DOI: 10.1021/jp406013q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles provide a template for preparing supported lipid layers with well-defined curvature. Here, we utilize the localized surface plasmon resonance (LSPR) of gold nanoparticles as a sensor for monitoring the preparation of lipid layers on nanoparticles. The LSPR is very sensitive to the immediate surroundings of the nanoparticle surface and it is used to monitor the coating of lipids and subsequent conversion of a supported bilayer to a hybrid membrane with an outer lipid leaflet and an inner leaflet containing hydrophobic alkanethiol. We demonstrate that both decanethiol and propanethiol are able to form hybrid membranes and that the membrane created over the shorter thiol can be stripped from the gold along with the lipid leaflet using β-mercaptoethanol. The sensitivity of the nanoparticle LSPR to the refractive index (RI) of its surroundings is greater when the shorter thiol is used (37.8 ± 1.5 nm per RI unit) than when the longer thiol is used (27.5 ± 0.5 nm per RI unit). Finally, C-reactive protein binding to the membrane is measured using this sensor allowing observation of both protein-membrane and nanoparticle-nanoparticle interactions without chemical labeling of protein or lipids.
Collapse
Affiliation(s)
- Reid E. Messersmith
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| | - Greg J. Nusz
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| | - Scott M. Reed
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, Office: 303 556-6260
| |
Collapse
|
15
|
Bennett WD, Chen AW, Donnini S, Groenhof G, Tieleman DP. Constant pH simulations with the coarse-grained MARTINI model — Application to oleic acid aggregates. CAN J CHEM 2013. [DOI: 10.1139/cjc-2013-0010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long chain fatty acids are biologically important molecules with complex and pH sensitive aggregation behavior. The carboxylic head group of oleic acid is ionizable, with the pKa shifting to larger values, even above a value of 7, in certain aggregate states. While experiments have determined the macroscopic phase behavior, we have yet to understand the molecular level details for this complex behavior. This level of detail is likely required to fully appreciate the role of fatty acids in biology and for nanoscale biotechnological and industrial applications. Here, we introduce the use of constant pH molecular dynamics (MD) simulations with the coarse-grained MARTINI model and apply the method to oleic acid aggregates and a model lipid bilayer. By running simulations at different constant pH values, we determined titration curves and the resulting pKa for oleic acid in different environments. The coarse-grained model predicts positive pKa shifts, with a shift from 4.8 in water to 6.5 in a small micelle, and 6.6 in a dioleoylphosphatidylcholine (DOPC) bilayer, similar to experimental estimates. The size of the micelles increased as the pH increased, and correlated with the fraction of deprotonated oleic acid. We show this combination of constant pH MD and the coarse-grained MARTINI model can be used to model pH-dependent surfactant phase behavior. This suggests a large number of potential new applications of large-scale MARTINI simulations in other biological systems with ionizable molecules.
Collapse
Affiliation(s)
- W.F. Drew Bennett
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Alexander W. Chen
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Serena Donnini
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gerrit Groenhof
- Department of Chemistry and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - D. Peter Tieleman
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
17
|
Vitorino C, Almeida J, Gonçalves LM, Almeida AJ, Sousa JJ, Pais AACC. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. J Control Release 2013; 167:301-14. [PMID: 23454133 DOI: 10.1016/j.jconrel.2013.02.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/09/2013] [Accepted: 02/11/2013] [Indexed: 11/24/2022]
Abstract
Co-encapsulation of drugs directed at commonly associated diseases provides a convenient means for administration, especially if transdermally delivered. In this work, a comprehensive study for the co-encapsulation of drugs with a differential lipophilicity, olanzapine and simvastatin, and their transdermal delivery in a formulation containing nanostructured lipid carriers (NLC) is presented. Focus is given to the evaluation of a strategy in which NLC and chemical permeation enhancers are combined. It comprises in vitro, in silico and cellular viability approaches. The optimization and rationalization of the systems are carried out using a two-step factorial design. It is shown that the external medium in the NLC dispersion strongly influences permeation. It is also seen that the use of NLC determines a synergistic effect with selected permeation enhancers, thus promoting marked flux enhancement ratios (48 and 21, respectively for olanzapine and simvastatin) relative to the drugs in solution. The developed formulations can be considered non-irritant. A correlation between enhancer positioning in a lipid bilayer, partially governed by a H-bonding phenomenon, and enhancement effect is suggested from molecular dynamics studies and experimental observations.
Collapse
Affiliation(s)
- C Vitorino
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|