1
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
2
|
Huang X, Xie W, Došlić N, Gelin MF, Domcke W. Ab Initio Quasiclassical Simulation of Femtosecond Time-Resolved Two-Dimensional Electronic Spectra of Pyrazine. J Phys Chem Lett 2021; 12:11736-11744. [PMID: 34851116 DOI: 10.1021/acs.jpclett.1c03589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) electronic spectroscopy is a powerful nonlinear technique which provides spectroscopic information on two frequency axes as well as dynamical information as a function of the so-called waiting time. Herein, an ab initio theoretical framework for the simulation of electronic 2D spectra has been developed. The method is based on the classical approximation to the doorway-window representation of three-pulse photon-echo signals and the description of nuclear motion by classical trajectories. Nonadiabatic effects are taken into account by a trajectory surface-hopping algorithm. 2D electronic spectra were simulated with ab initio on-the-fly trajectory calculations using the ADC(2) electronic-structure method for the pyrazine molecule, which is a benchmark system for ultrafast radiationless decay through conical intersections. It is demonstrated that 2D spectroscopy with subfemtosecond UV pulses can provide unprecedented detailed information on the ultrafast photodynamics of polyatomic molecules.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Chemistry, Technical University of Munich, Garching, D-85747, Germany
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Nađa Došlić
- Department of Physical Chemistry, Ruder Boscovic Institute, Zagreb, HR-10000, Croatia
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching, D-85747, Germany
| |
Collapse
|
3
|
Zhu WD, Wang R, Wang XY, Xiao M, Zhang CF. Two-dimensional electronic spectroscopy with active phase Management. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2012222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei-da Zhu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-yong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Chun-feng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
5
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
6
|
Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 2019. [DOI: 10.1039/c9sc03871j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional ultraviolet spectroscopy has the potential to deliver rich structural and dynamical information on biomolecules such as DNA and proteins.
Collapse
Affiliation(s)
| | - A. Nenov
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - L. Ganzer
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Oriana
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - C. Manzoni
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Tolomelli
- Dipartimento di Chimica
- Universitá degli Studi di Bologna
- I-40126 Bologna
- Italy
| | - I. Rivalta
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - S. Mukamel
- Department of Chemistry
- Department of Physics and Astronomy
- University of California
- Irvine
- USA
| | - M. Garavelli
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| |
Collapse
|
7
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Cham) 2018; 376:24. [DOI: 10.1007/s41061-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 10/14/2022]
|
9
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
10
|
Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171425. [PMID: 29410844 PMCID: PMC5792921 DOI: 10.1098/rsos.171425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Collapse
Affiliation(s)
- Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
11
|
Segarra-Martí J, Jaiswal VK, Pepino AJ, Giussani A, Nenov A, Mukamel S, Garavelli M, Rivalta I. Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates. Faraday Discuss 2018; 207:233-250. [DOI: 10.1039/c7fd00201g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows characterising ground state conformations of flexible nucleobase aggregates that play a crucial role in nucleic acid photochemistry.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Claude Bernard Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Ana Julieta Pepino
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Angelo Giussani
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Shaul Mukamel
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Ivan Rivalta
- Univ Lyon, Ens de Lyon, CNRS
- Université Claude Bernard Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| |
Collapse
|
12
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Borrego-Varillas R, Oriana A, Ganzer L, Trifonov A, Buchvarov I, Manzoni C, Cerullo G. Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line. OPTICS EXPRESS 2016; 24:28491-28499. [PMID: 27958492 DOI: 10.1364/oe.24.028491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.
Collapse
|
14
|
Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016; 21:molecules21121666. [PMID: 27918489 PMCID: PMC6274573 DOI: 10.3390/molecules21121666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess the accuracy of these different computational strategies under study based on a variety of numerical thresholds and optimization methods. Several basis sets and active spaces have also been calibrated to understand to what extent they can influence the resulting geometries and subsequent interpretation of the photochemical decay channels. The study shows small discrepancies between CASSCF and CASPT2 PEHs, displaying a shallow planar or twisted 1(ππ*) minimum, respectively, and thus featuring a qualitatively similar scenario for supporting the ultrafast bi-exponential deactivation registered in thymine upon UV-light exposure. A deeper knowledge of the PEHs at different levels of theory provides useful insight into its correct characterization and subsequent interpretation of the experimental observations. The discrepancies displayed by the different methods studied here are then discussed and framed within their potential consequences in on-the-fly non-adiabatic molecular dynamics simulations, where qualitatively diverse outcomes are expected.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
- Present Address: Laboratoire de Chimie UMR 5182, École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.
| | - Antonio Francés-Monerris
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| |
Collapse
|
15
|
Prokhorenko VI, Picchiotti A, Pola M, Dijkstra AG, Miller RJD. New Insights into the Photophysics of DNA Nucleobases. J Phys Chem Lett 2016; 7:4445-4450. [PMID: 27786479 DOI: 10.1021/acs.jpclett.6b02085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the results of an extended time-resolved study of DNA nucleobases in aqueous solutions conducted in the deep UV using broad-band femtosecond transient absorption and electronic two-dimensional spectroscopies. We found that the photodeactivation in all DNA nucleobases occurs in two steps: fast relaxation (500-700 fs) from the excited state ππ* to a "dark" state and its depopulation to the ground state within 1-2 ps. Our experimental observations and performed theoretical modeling allow us to conclude that this dark state can be associated with the nπ* electronic state, which is connected to the excited and ground states via conical intersections.
Collapse
Affiliation(s)
- Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alessandra Picchiotti
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martina Pola
- Institute for Theoretical Physics, University of Hamburg , Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Arend G Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry and Department of Physics, University of Toronto , 80 St. George Street, Toronto, Canada M5S 1H6
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
16
|
Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate. Chemistry 2016; 22:7497-507. [PMID: 27113273 PMCID: PMC5021121 DOI: 10.1002/chem.201505086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 02/04/2023]
Abstract
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.
Collapse
Affiliation(s)
- Quansong Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France
| | - Alexander A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France.
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain.
| |
Collapse
|
17
|
Guo Z, Molesky BP, Cheshire TP, Moran AM. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy. J Chem Phys 2015; 143:124202. [DOI: 10.1063/1.4931473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy. J Chem Phys 2015; 142:212443. [PMID: 26049463 DOI: 10.1063/1.4921016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the Lb/La transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Vishal K Jaiswal
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Ivan Rivalta
- Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|
19
|
Taioli S, Simonucci S, A Beccara S, Garavelli M. Tetrapeptide unfolding dynamics followed by core-level spectroscopy: a first-principles approach. Phys Chem Chem Phys 2015; 17:11269-76. [PMID: 25839064 DOI: 10.1039/c4cp05902f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work we demonstrate that core level analysis is a powerful tool for disentangling the dynamics of a model polypeptide undergoing conformational changes in solution and disulphide bond formation. In particular, we present computer simulations within both initial and final state approximations of 1s sulphur core level shifts (S1s CLS) of the CYFC (cysteine-phenylalanine-tyrosine-cysteine) tetrapeptide for different folding configurations. Using increasing levels of accuracy, from Hartree-Fock and density functional theory to configuration interaction via a multiscale algorithm capable of reducing drastically the computational cost of electronic structure calculations, we find that distinct peptide arrangements present S1s CLS sizeably different (in excess of 0.5 eV) with respect to the reference disulfide bridge state. This approach, leading to experimentally detectable signals, may represent an alternative to other established spectroscopic techniques.
Collapse
Affiliation(s)
- Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, and Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Trento, Italy.
| | | | | | | |
Collapse
|
20
|
Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 2015; 3:29. [PMID: 25941671 PMCID: PMC4403598 DOI: 10.3389/fchem.2015.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 01/17/2023] Open
Abstract
The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ(*) La and Lb states, whereas the energy of the oxygen lone-pair nπ(*) state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state toward a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ(*) state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population toward the ground state and subsequent relaxation back to the FC region.
Collapse
Affiliation(s)
| | | | - Artur Nenov
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Irene Conti
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician,” Università di BolognaBologna, Italy
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, UMR 5182, Université de LyonLyon, France
| |
Collapse
|
21
|
Prokhorenko VI, Picchiotti A, Maneshi S, Dwayne Miller RJ. Broadband Electronic Two-Dimensional Spectroscopy in the Deep UV. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13242-6_105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
22
|
Li J, Deng M, Voronine DV, Mukamel S, Jiang J. Two-dimensional near ultraviolet (2DNUV) spectroscopic probe of structural-dependent exciton dynamics in a protein. J Phys Chem B 2015; 119:1314-22. [PMID: 25544569 DOI: 10.1021/jp509314y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the exciton dynamics in biological systems is crucial for the manipulation of their function. We present a combined quantum mechanics (QM) and molecular dynamics (MD) simulation study that demonstrates how coherent two-dimensional near-ultraviolet (2DNUV) spectra can be used to probe the exciton dynamics in a mini-protein, Trp-cage. The 2DNUV signals originate from aromatic transitions that are significantly affected by the couplings between residues, which determine exciton transport and energy relaxation. The temporal evolution of 2DNUV features captures important protein structural information, including geometric details and peptide orientations.
Collapse
Affiliation(s)
- Jun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, 230026, China
| | | | | | | | | |
Collapse
|
23
|
Réhault J, Maiuri M, Oriana A, Cerullo G. Two-dimensional electronic spectroscopy with birefringent wedges. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:123107. [PMID: 25554272 DOI: 10.1063/1.4902938] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Collapse
Affiliation(s)
- Julien Réhault
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Aurelio Oriana
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
24
|
Roberts GM, Marroux HJB, Grubb MP, Ashfold MNR, Orr-Ewing AJ. On the Participation of Photoinduced N–H Bond Fission in Aqueous Adenine at 266 and 220 nm: A Combined Ultrafast Transient Electronic and Vibrational Absorption Spectroscopy Study. J Phys Chem A 2014; 118:11211-25. [DOI: 10.1021/jp508501w] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gareth M. Roberts
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Hugo J. B. Marroux
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael P. Grubb
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael N. R. Ashfold
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
25
|
Molesky BP, Giokas PG, Guo Z, Moran AM. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV. J Chem Phys 2014; 141:114202. [DOI: 10.1063/1.4894846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul G. Giokas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
26
|
Nenov A, Beccara S, Rivalta I, Cerullo G, Mukamel S, Garavelli M. Tracking conformational dynamics of polypeptides by nonlinear electronic spectroscopy of aromatic residues: a first-principles simulation study. Chemphyschem 2014; 15:3282-90. [PMID: 25145908 DOI: 10.1002/cphc.201402374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/06/2022]
Abstract
The ability of nonlinear electronic spectroscopy to track folding/unfolding processes of proteins in solution by monitoring aromatic interactions is investigated by first-principles simulations of two-dimensional (2D) electronic spectra of a model peptide. A dominant reaction pathway approach is employed to determine the unfolding pathway of a tetrapeptide, which connects the initial folded configuration with stacked aromatic side chains and the final unfolded state with distant noninteracting aromatic residues. The π-stacking and excitonic coupling effects are included through ab initio simulations based on multiconfigurational methods within a hybrid quantum mechanics/molecular mechanics scheme. It is shown that linear absorption spectroscopy in the ultraviolet (UV) region is unable to resolve the unstacking dynamics characterized by the three-step process: T-shaped→twisted offset stacking→unstacking. Conversely, pump-probe spectroscopy can be used to resolve aromatic interactions by probing in the visible region, the excited-state absorptions (ESAs) that involve charge-transfer states. 2D UV spectroscopy offers the highest sensitivity to the unfolding process, by providing the disentanglement of ESA signals belonging to different aromatic chromophores and high correlation between the conformational dynamics and the quartic splitting.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126 Bologna (Italy).
| | | | | | | | | | | |
Collapse
|
27
|
Lai Z, Jiang J, Mukamel S, Wang J. Exploring the Protein Folding Dynamics of Beta3s with Two-Dimensional Ultraviolet (2DUV) Spectroscopy. Isr J Chem 2014. [DOI: 10.1002/ijch.201300141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Jiang J, Lai Z, Wang J, Mukamel S. Signatures of the Protein Folding Pathway in Two-Dimensional Ultraviolet Spectroscopy. J Phys Chem Lett 2014; 5:1341-1346. [PMID: 24803996 PMCID: PMC3999791 DOI: 10.1021/jz5002264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/19/2014] [Indexed: 05/24/2023]
Abstract
The function of protein relies on their folding to assume the proper structure. Probing the structural variations during the folding process is crucial for understanding the underlying mechanism. We present a combined quantum mechanics/molecular dynamics simulation study that demonstrates how coherent resonant nonlinear ultraviolet spectra can be used to follow the fast folding dynamics of a mini-protein, Trp-cage. Two dimensional ultraviolet signals of the backbone transitions carry rich information of both local (secondary) and global (tertiary) structures. The complexity of signals decreases as the conformational entropy decreases in the course of the folding process. We show that the approximate entropy of the signals provides a quantitative marker of protein folding status, accessible by both theoretical calculations and experiments.
Collapse
Affiliation(s)
- Jun Jiang
- Department
of Chemical Physics, University of Science
and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230026, China
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| | - Zaizhi Lai
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
| | - Jin Wang
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625, Ren
Min Street, Changchun, Jilin 130021, China
| | - Shaul Mukamel
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| |
Collapse
|
29
|
Nenov A, Rivalta I, Cerullo G, Mukamel S, Garavelli M. Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian. J Phys Chem Lett 2014; 5:767-771. [PMID: 24803989 PMCID: PMC3985887 DOI: 10.1021/jz5002314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 05/28/2023]
Abstract
Two-dimensional (2D) optical spectroscopy techniques based on ultrashort laser pulses have been recently extended to the optical domain in the ultraviolet (UV) spectral region. UV-active aromatic side chains can thus be used as local highly specific markers for tracking dynamics and structural rearrangements of proteins. Here we demonstrate that 2D electronic spectra of a model proteic system, a tetrapeptide with two aromatic side chains, contain enough structural information to distinguish between two different configurations with distant and vicinal side chains. For accurate simulations of the 2DUV spectra in solution, we combine a quantum mechanics/molecular mechanics approach based on wave function methods, accounting for interchromophores coupling and environmental effects, with nonlinear response theory. The proposed methodology reveals effects, such as charge transfer between vicinal aromatic residues that remain concealed in conventional exciton Hamiltonian approaches. Possible experimental setups are discussed, including multicolor experiments and signal manipulation techniques for limiting undesired background contributions and enhancing 2DUV signatures of specific electronic couplings.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
- Laboratoire
de Chimie, Ecole Normale Supérieure de Lyon, 46, allée d’Italie 69364 Lyon, France
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Shaul Mukamel
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
- Laboratoire
de Chimie, Ecole Normale Supérieure de Lyon, 46, allée d’Italie 69364 Lyon, France
| |
Collapse
|
30
|
Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution. Top Curr Chem (Cham) 2014; 355:245-327. [DOI: 10.1007/128_2014_554] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
West BA, Molesky BP, Giokas PG, Moran AM. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Pulse Compression of Ultrashort UV Pulses by Self-Phase Modulation in Bulk Material. APPLIED SCIENCES-BASEL 2013. [DOI: 10.3390/app3010153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Widom JR, Johnson NP, von Hippel PH, Marcus AH. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS). NEW JOURNAL OF PHYSICS 2013; 15:10.1088/1367-2630/15/2/025028. [PMID: 24223491 PMCID: PMC3819147 DOI: 10.1088/1367-2630/15/2/025028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) - a fluorescence-detected variation of 2D electronic spectroscopy - to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Julia R. Widom
- Oregon Center for Optics and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | - Neil P. Johnson
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | - Peter H. von Hippel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | - Andrew H. Marcus
- Oregon Center for Optics and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
34
|
West BA, Giokas PG, Molesky BP, Ross AD, Moran AM. Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses. OPTICS EXPRESS 2013; 21:2118-2125. [PMID: 23389192 DOI: 10.1364/oe.21.002118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Knowledge of elementary relaxation processes in small molecules and proteins motivates the extension of two-dimensional photon echo (2DPE) spectroscopy further into the UV wavelength range. Here, we describe our development of a four-wave mixing spectrometer employing 200 nm laser pulses. Filamentation of laser beams in both air and argon yields 200 nm pulses with 60 fs durations. These 200 nm pulses are used to probe dynamics initiated at 267 nm in transient grating and 2DPE experiments conducted on adenosine. This study demonstrates that these femtosecond spectroscopies may indeed be carried out at the shortest wavelengths feasible in aqueous solutions.
Collapse
Affiliation(s)
- Brantley A West
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27510, USA
| | | | | | | | | |
Collapse
|
35
|
Lam AR, Rodriguez JJ, Rojas A, Scheraga HA, Mukamel S. Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. J Phys Chem A 2013; 117:342-50. [PMID: 23214934 DOI: 10.1021/jp3101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of plaque deposits in the human brain. The main component of these plaques consists of highly ordered structures called amyloid fibrils, formed by the amyloid β-peptide (Aβ). The mechanism connecting Aβ and AD is yet undetermined. In a previous study, a coarse-grained united-residue model and molecular dynamics simulations were used to model the growth mechanism of Aβ amyloid fibrils. On the basis of these simulations, a dock/lock mechanism was proposed, in which Aβ fibrils grow by adding monomers at either end of an amyloid fibril template. To examine the structures in the early time-scale formation and growth of amyloid fibrils, simulated two-dimensional ultraviolet spectroscopy is used. These early structures are monitored in the far ultraviolet regime (λ = 190-250 nm) in which the computed signals originate from the backbone nπ* and ππ* transitions. These signals show distinct cross-peak patterns that can be used, in combination with molecular dynamics, to monitor local dynamics and conformational changes in the secondary structure of Aβ-peptides. The protein geometry-correlated chiral xxxy signal and the non-chiral combined signal xyxy-xyyx were found to be sensitive to, and in agreement with, a dock/lock pathway.
Collapse
Affiliation(s)
- A R Lam
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-2025, USA.
| | | | | | | | | |
Collapse
|
36
|
Engler G, Seefeld K, Schmitt M, Tatchen J, Grotkopp O, Müller TJJ, Kleinermanns K. Acetylation makes the difference: a joint experimental and theoretical study on low-lying electronically excited states of 9H-adenine and 9-acetyladenine. Phys Chem Chem Phys 2013; 15:1025-31. [DOI: 10.1039/c2cp42859h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
West BA, Moran AM. Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range. J Phys Chem Lett 2012; 3:2575-81. [PMID: 26295877 DOI: 10.1021/jz301048n] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Coherent two-dimensional (2D) spectroscopies conducted at visible and infrared wavelengths are having a transformative impact on the understanding of numerous processes in condensed phases. The extension of 2D spectroscopy to the ultraviolet spectral range (2DUV) must contend with several challenges, including the attainment of adequate laser bandwidth, interferometric phase stability, and the suppression of undesired nonlinearities in the sample medium. Solutions to these problems are motivated by the study of a wide range of biological systems whose lowest-frequency electronic resonances are found in the UV. The development of 2DUV spectroscopy also makes possible the attainment of new insights into elementary chemical reaction dynamics (e.g., electrocyclic ring opening in cycloalkenes). Substantial progress has been made in both the implementation and application of 2DUV spectroscopy in the past several years. In this Perspective, we discuss 2DUV methodology, review recent applications, and speculate on what the future will hold.
Collapse
Affiliation(s)
- Brantley A West
- †Department of Physics and Astronomy and ‡Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew M Moran
- †Department of Physics and Astronomy and ‡Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
West BA, Womick JM, Moran AM. Interplay between vibrational energy transfer and excited state deactivation in DNA components. J Phys Chem A 2012; 117:5865-74. [PMID: 22920964 DOI: 10.1021/jp306799e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Femtosecond laser spectroscopies are used to examine a thymine family of systems chosen to expose the interplay between excited state deactivation and two distinct vibrational energy transfer (VET) pathways: (i) VET from the base to the deoxyribose ring; (ii) VET between neighboring units in a dinucleotide. We find that relaxation in the ground electronic state accelerates markedly as the molecular sizes increase from the nucleobase to the dinucleotide. This behavior directly reflects growth in the density of vibrational quantum states on the substituent of the base. Excited state lifetimes are studied at temperatures ranging from 100 to 300 K to characterize the thermal fluctuations that connect the Franck-Condon geometries and the conical intersections leading back to the ground state. An Arrhenius analysis yields an approximate excited state energy barrier of 13 meV in the thymine dinucleotide. In addition, we find that the transfer of vibrational energy from the base to the substituent suppresses thermal fluctuations across this energy barrier. The possibility that the solvent viscosity imposes friction on the reaction coordinate is examined by comparing thymine and adenine systems. Experiments suggest that the solvent viscosity has little effect on barrier crossing dynamics in thymine because the conical intersection is accessed through relatively small out-of-plane atomic displacements. Overall, we conclude that the transfer of vibrational quanta from thymine to the deoxyribose ring couples significantly to the internal conversion rate, whereas the neighboring unit in the dinucleotide serves as a secondary heat bath. In natural DNA, it follows that (local) thermal fluctuations in the geometries of subunits involving the base and deoxyribose ring are most important to this subpicosecond relaxation process.
Collapse
Affiliation(s)
- Brantley A West
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
39
|
Auböck G, Consani C, van Mourik F, Chergui M. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. OPTICS LETTERS 2012; 37:2337-9. [PMID: 22739900 DOI: 10.1364/ol.37.002337] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a broadband two-dimensional transient absorption setup for the UV around 300 nm with a time resolution of 150 fs. A narrowband, frequency tunable pump pulse and a broadband probe pulse are generated from the output of a noncollinear optical parametric amplifier operated at 20 kHz repetition rate and combined in a spectrally resolved transient absorption experiment. The high repetition rate and low noise of the setup allow us to acquire high quality two-dimensional data as a function of time delay with an unsurpassed frequency window of 10,000 and 8000 cm(-1) along the probe and pump axis, respectively. The performance of the setup is demonstrated on 2,5-Diphenyloxazol dissolved in cyclohexane.
Collapse
Affiliation(s)
- Gerald Auböck
- Laboratory of Ultrafast Spectroscopy, EPFL, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
40
|
Lewis KLM, Ogilvie JP. Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2012; 3:503-10. [PMID: 26286055 DOI: 10.1021/jz201592v] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has emerged as a powerful method for elucidating the structure-function relationship in photosynthetic systems. In this Perspective, we discuss features of two-dimensional spectroscopy that make it highly suited to address questions about the underlying electronic structure that guides energy- and charge-transfer processes in light-harvesting materials. We briefly describe a pulse-shaping-based implementation of two-dimensional spectroscopy that is making the method widely accessible to problems spanning frequency regimes from the ultraviolet to the mid-infrared. We illustrate the utility of 2DES in the context of our recent studies of the primary energy-transfer and charge separation events in the photosystem II reaction center, discussing remaining challenges and speculating about exciting future directions for the field of multidimensional spectroscopy.
Collapse
Affiliation(s)
- Kristin L M Lewis
- Department of Physics and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1040, United States
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
41
|
Petersen J, Wohlgemuth M, Sellner B, Bonačić-Koutecký V, Lischka H, Mitrić R. Laser pulse trains for controlling excited state dynamics of adenine in water. Phys Chem Chem Phys 2012; 14:4687-94. [DOI: 10.1039/c2cp24002e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Cannizzo A. Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules. Phys Chem Chem Phys 2012; 14:11205-23. [DOI: 10.1039/c2cp40567a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Tseng CH, Sándor P, Kotur M, Weinacht TC, Matsika S. Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV. J Phys Chem A 2011; 116:2654-61. [PMID: 22074393 DOI: 10.1021/jp207228b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We compare two-dimensional (2D) ultrafast Fourier transform spectroscopy measurements in the deep UV (262 nm) for adenine and uracil in solution. Both molecules show excited-state absorption on short time scales and ground-state bleaching extending for over 1 ps. While the 2D spectrum for uracil shows changes in the center of gravity during the first few hundred femtoseconds, the center of gravity of the 2D spectrum for adenine does not show similar changes. We discuss our results in light of ab initio electronic structure calculations.
Collapse
Affiliation(s)
- Chien-hung Tseng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
44
|
West BA, Womick JM, Moran AM. Influence of temperature on thymine-to-solvent vibrational energy transfer. J Chem Phys 2011; 135:114505. [DOI: 10.1063/1.3628451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|