1
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
2
|
Directly monitor protein rearrangement on a nanosecond-to-millisecond time-scale. Sci Rep 2017; 7:8691. [PMID: 28821738 PMCID: PMC5562898 DOI: 10.1038/s41598-017-08385-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
In order to directly observe the refolding kinetics from a partially misfolded state to a native state in the bottom of the protein-folding funnel, we used a "caging" strategy to trap the β-sheet structure of ubiquitin in a misfolded conformation. We used molecular dynamics simulation to generate the cage-induced, misfolded structure and compared the structure of the misfolded ubiquitin with native ubiquitin. Using laser flash irradiation, the cage can be cleaved from the misfolded structure within one nanosecond, and we monitored the refolding kinetics of ubiquitin from this misfolded state to the native state by photoacoustic calorimetry and photothermal beam deflection techniques on nanosecond to millisecond timescales. Our results showed two refolding events in this refolding process. The fast event is shorter than 20 ns and corresponds to the instant collapse of ubiquitin upon cage release initiated by laser irradiation. The slow event is ~60 μs, derived from a structural rearrangement in β-sheet refolding. The event lasts 10 times longer than the timescale of β-hairpin formation for short peptides as monitored by temperature jump, suggesting that rearrangement of a β-sheet structure from a misfolded state to its native state requires more time than ab initio folding of a β-sheet.
Collapse
|
3
|
Kitzig S, Thilemann M, Cordes T, Rück-Braun K. Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. Chemphyschem 2016; 17:1252-63. [DOI: 10.1002/cphc.201501050] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- S. Kitzig
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| | - M. Thilemann
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| | - T. Cordes
- Molecular Microscopy Research Group; Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Karola Rück-Braun
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
4
|
Robert É, Lefèvre T, Fillion M, Martial B, Dionne J, Auger M. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles. Biochemistry 2015; 54:3932-41. [PMID: 26057537 DOI: 10.1021/acs.biochem.5b00442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.
Collapse
Affiliation(s)
- Émile Robert
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Matthieu Fillion
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Justine Dionne
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
5
|
Razavi AM, Voelz VA. Kinetic Network Models of Tryptophan Mutations in β-Hairpins Reveal the Importance of Non-Native Interactions. J Chem Theory Comput 2015; 11:2801-12. [DOI: 10.1021/acs.jctc.5b00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asghar M. Razavi
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A. Voelz
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Markiewicz BN, Yang L, Culik RM, Gao YQ, Gai F. How quickly can a β-hairpin fold from its transition state? J Phys Chem B 2014; 118:3317-25. [PMID: 24611730 PMCID: PMC3969101 DOI: 10.1021/jp500774q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Understanding the structural nature
of the free energy bottleneck(s)
encountered in protein folding is essential to elucidating the underlying
dynamics and mechanism. For this reason, several techniques, including
Φ-value analysis, have previously been developed to infer the
structural characteristics of such high free-energy or transition
states. Herein we propose that one (or few) appropriately placed backbone
and/or side chain cross-linkers, such as disulfides, could be used
to populate a thermodynamically accessible conformational state that
mimics the folding transition state. Specifically, we test this hypothesis
on a model β-hairpin, Trpzip4, as its folding mechanism has
been extensively studied and is well understood. Our results show
that cross-linking the two β-strands near the turn region increases
the folding rate by an order of magnitude, to about (500 ns)−1, whereas cross-linking the termini results in a hyperstable β-hairpin
that has essentially the same folding rate as the uncross-linked peptide.
Taken together, these findings suggest that cross-linking is not only
a useful strategy to manipulate folding free energy barriers, as shown
in other studies, but also, in some cases, it can be used to stabilize
a folding transition state analogue and allow for direct assessment
of the folding process on the downhill side of the free energy barrier.
The calculated free energy landscape of the cross-linked Trpzip4 also
supports this picture. An empirical analysis further suggests, when
folding of β-hairpins does not involve a significant free energy
barrier, the folding time (τ) follows a power law dependence
on the number of hydrogen bonds to be formed (nH), namely, τ = τ0nHα, with
τ0 = 20 ns and α = 2.3.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry and ‡Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
7
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
8
|
Culik RM, Jo H, DeGrado WF, Gai F. Using thioamides to site-specifically interrogate the dynamics of hydrogen bond formation in β-sheet folding. J Am Chem Soc 2012; 134:8026-9. [PMID: 22540162 PMCID: PMC3354031 DOI: 10.1021/ja301681v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioamides are sterically almost identical to their oxoamide counterparts, but they are weaker hydrogen bond acceptors. Therefore, thioamide amino acids are excellent candidates for perturbing the energetics of backbone-backbone H-bonds in proteins and hence should be useful in elucidating protein folding mechanisms in a site-specific manner. Herein, we validate this approach by applying it to probe the dynamic role of interstrand H-bond formation in the folding kinetics of a well-studied β-hairpin, tryptophan zipper. Our results show that reducing the strength of the peptide's backbone-backbone H-bonds, except the one directly next to the β-turn, does not change the folding rate, suggesting that most native interstrand H-bonds in β-hairpins are formed only after the folding transition state.
Collapse
Affiliation(s)
- Robert M Culik
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|