1
|
Ma X, Zhao Y, He C, Zhou X, Qi H, Wang Y, Chen C, Wang D, Li J, Ke Y, Wang J, Xu H. Ordered Packing of β-Sheet Nanofibrils into Nanotubes: Multi-hierarchical Assembly of Designed Short Peptides. NANO LETTERS 2021; 21:10199-10207. [PMID: 34870987 DOI: 10.1021/acs.nanolett.1c02944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although it is well-known proteins and their complexes are hierarchically organized and highly ordered structures, it remains a major challenge to replicate their hierarchical self-assembly process and to fabricate multihierarchical architectures with well-defined shapes and monodisperse characteristic sizes via peptide self-assembly. Here we describe an amphiphilic short peptide Ac-I3GGHK-NH2 that first preassembles into thin, left-handed β-sheet nanofibrils, followed by their ordered packing into right-handed nanotubes. The key intermediate morphology and structures featuring the hierarchical process are simultaneously demonstrated. Further mechanistic exploration with the variants Ac-I3GGGK-NH2, Ac-I3GGFK-NH2, and Ac-I3GGDHDK-NH2 reveals the vital role of multiple His-His side chain interactions between nanofibrils in mediating higher-order assembly and architectures. Altogether, our findings not only advance current understanding of hierarchical assembly of peptides and proteins but also afford a paradigm of how to take advantage of side chain interactions to construct higher-order assemblies with enhanced complexities.
Collapse
Affiliation(s)
- Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dalang, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, 59 Shuilingshan Road, Qingdao 266400, China
| | - Hao Qi
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jie Li
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dalang, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Biotechnology and Bioengineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
2
|
DFT calculations and NMR measurements applied to the conformational analysis of cis and trans -3-phenylaminocyclohexyl N,N -dimethylcarbamates. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wiebe H, Louwerse M, Weinberg N. Theoretical volume profiles for conformational changes: Application to internal rotation of benzene ring in 1,12-dimethoxy-[12]-paracyclophane. J Chem Phys 2017; 146:104107. [DOI: 10.1063/1.4977732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Heather Wiebe
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Miranda Louwerse
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| | - Noham Weinberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
4
|
Kaminský J, Jensen F. Conformational Interconversions of Amino Acid Derivatives. J Chem Theory Comput 2016; 12:694-705. [PMID: 26691979 DOI: 10.1021/acs.jctc.5b00911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exhaustive conformational interconversions including transition structure analyses of N-acetyl-l-glycine-N-methylamide as well as its alanine, serine, and cysteine analogues have been investigated at the MP2/6-31G** level, yielding a total of 142 transition states. Improved estimates of relative energies were obtained by separately extrapolating the Hartree-Fock and MP2 energies to the basis set limit and adding the difference between CCSD(T) and MP2 results with the cc-pVDZ basis set to the extrapolated MP2 results. The performance of eight empirical force fields (AMBER94, AMBER14SB, MM2, MM3, MMFFs, CHARMM22_CMAP, OPLS_2005, and AMOEBAPRO13) in reproducing ab initio energies of transition states was tested. Our results indicate that commonly used class I force fields employing a fixed partial charge model for the electrostatic interaction provide mean errors in the ∼10 kJ/mol range for energies of conformational transition states for amino acid conformers. Modern reparametrized versions, such as CHARMM22_CMAP, and polarizable force fields, such as AMOEBAPRO13, have slightly lower mean errors, but maximal errors are still in the 35 kJ/mol range. There are differences between the force fields in their ability for reproducing conformational transitions classified according to backbone/side-chain or regions in the Ramachandran angles, but the data set is likely too small to draw any general conclusions. Errors in conformational interconversion barriers by ∼10 kJ/mol suggest that the commonly used force field may bias certain types of transitions by several orders of magnitude in rate and thus lead to incorrect dynamics in simulations. It is therefore suggested that information for conformational transition states should be included in parametrizations of new force fields.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Frank Jensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Kann N, Johansson JR, Beke-Somfai T. Conformational properties of 1,4- and 1,5-substituted 1,2,3-triazole amino acids – building units for peptidic foldamers. Org Biomol Chem 2015; 13:2776-85. [PMID: 25605623 PMCID: PMC4718141 DOI: 10.1039/c4ob02359e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/02/2015] [Indexed: 01/22/2023]
Abstract
Peptidic foldamers have recently emerged as a novel class of artificial oligomers with properties and structural diversity similar to that of natural peptides, but possessing additional interesting features granting them great potential for applications in fields from nanotechnology to pharmaceuticals. Among these, foldamers containing 1,4- and 1,5-substitued triazole amino acids are easily prepared via the Cu- and Ru-catalyzed click reactions and may offer increased side chain variation, but their structural capabilities have not yet been widely explored. We here describe a systematic analysis of the conformational space of the two most important basic units, the 1,4-substitued (4Tzl) and the 1,5-substitued (5Tzl) 1,2,3-triazole amino acids, using quantum chemical calculations and NMR spectroscopy. Possible conformations of the two triazoles were scanned and their potential minima were located using several theoretical approaches (B3LYP/6-311++G(2d,2p), ωB97X-D/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and MP2/6-311++G(2d,2p)) in different solvents. BOC-protected versions of 4Tzl and 5Tzl were also prepared via one step transformations and analyzed by 2D NOESY NMR. Theoretical results show 9 conformers for 5Tzl derivatives with relative energies lying close to each other, which may lead to a great structural diversity. NMR analysis also indicates that conformers preferring turn, helix and zig-zag secondary structures may coexist in solution. In contrast, 4Tzl has a much lower number of conformers, only 4, and these lack strong intraresidual interactions. This is again supported by NMR suggesting the presence of both extended and bent conformers. The structural information provided on these building units could be employed in future design of triazole foldamers.
Collapse
Affiliation(s)
- Nina Kann
- Department of Chemical and Biological Engineering , Chalmers University of Technology , SE-41296 Göteborg , Sweden . ; ; http://www.chalmers.se/chem/ ; Fax: +46-31-7723858 ; Tel: +46 (0)31 772 3029, +46 (0)31 772 3070
| | - Johan R. Johansson
- AstraZeneca R&D Mölndal , RIA IMED , Medicinal Chemistry , SE-43183 Mölndal , Sweden .
| | - Tamás Beke-Somfai
- Department of Chemical and Biological Engineering , Chalmers University of Technology , SE-41296 Göteborg , Sweden . ; ; http://www.chalmers.se/chem/ ; Fax: +46-31-7723858 ; Tel: +46 (0)31 772 3029, +46 (0)31 772 3070
- Research Centre for Natural Sciences , Hungarian Academy of Sciences , Pázmány Péter sétány 1 , H-1125 Budapest , Hungary
| |
Collapse
|
6
|
Johansson JR, Hermansson E, Nordén B, Kann N, Beke-Somfai T. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units. European J Org Chem 2014. [DOI: 10.1002/ejoc.201400018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Quesada-Moreno MM, Azofra LM, Avilés-Moreno JR, Alkorta I, Elguero J, López-González JJ. Conformational preference and chiroptical response of carbohydrates D-ribose and 2-deoxy-D-ribose in aqueous and solid phases. J Phys Chem B 2013; 117:14599-614. [PMID: 24134404 DOI: 10.1021/jp405121s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work targets the structural preferences of D-ribose and 2-deoxy-D-ribose in water solution and solid phase. A theoretical DFT (B3LYP and M06-2X) and MP2 study has been undertaken considering the five possible configurations (open-chain, α-furanose, β-furanose, α-pyranose, and β-pyranose) of these two carbohydrates with a comparison of the solvent treatment using only a continuum solvation model (PCM) and the PCM plus one explicit water molecule. In addition, experimental vibrational studies using both nonchiroptical (IR-Raman) and chiroptical (VCD) techniques have been carried out. The theoretical and experimental results show that α- and β-pyranose forms are the dominant configurations for both compounds. Moreover, it has been found that 2-deoxy-D-ribose presents a non-negligible percentage of open-chain forms in aqueous solution, while in solid phase this configuration is absent.
Collapse
Affiliation(s)
- María Mar Quesada-Moreno
- Department of Physical and Analytical Chemistry, University of Jaén , Campus Las Lagunillas, E-23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Gloaguen E, Loquais Y, Thomas JA, Pratt DW, Mons M. Spontaneous Formation of Hydrophobic Domains in Isolated Peptides. J Phys Chem B 2013; 117:4945-55. [DOI: 10.1021/jp401499x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric Gloaguen
- Laboratoire Francis Perrin, CNRS, INP & INC, URA 2453, F-91191 Gif-sur-Yvette, France
- Laboratoire Francis
Perrin, CEA, IRAMIS, URA 2453, F-91191
Gif-sur-Yvette, France
| | - Yohan Loquais
- Laboratoire Francis Perrin, CNRS, INP & INC, URA 2453, F-91191 Gif-sur-Yvette, France
- Laboratoire Francis
Perrin, CEA, IRAMIS, URA 2453, F-91191
Gif-sur-Yvette, France
| | - Jessica A. Thomas
- Department
of Biology and Chemistry, Purdue University North Central, Westville, Indiana
46391, United States
| | - David W. Pratt
- Department
of Chemistry, University of Vermont, Burlington,
Vermont 05405, United
States
| | - Michel Mons
- Laboratoire Francis Perrin, CNRS, INP & INC, URA 2453, F-91191 Gif-sur-Yvette, France
- Laboratoire Francis
Perrin, CEA, IRAMIS, URA 2453, F-91191
Gif-sur-Yvette, France
| |
Collapse
|
9
|
Dean JC, Buchanan EG, Zwier TS. Mixed 14/16 Helices in the Gas Phase: Conformation-Specific Spectroscopy of Z-(Gly)n, n = 1, 3, 5. J Am Chem Soc 2012; 134:17186-201. [PMID: 23039317 DOI: 10.1021/ja306652c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jacob C. Dean
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - Evan G. Buchanan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| |
Collapse
|