1
|
Ostadsharif Memar Z, Moosavi M. Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids - an ab initio molecular dynamics (AIMD) study. Phys Chem Chem Phys 2024; 26:26109-26128. [PMID: 39378023 DOI: 10.1039/d4cp03177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In this study, we investigated the effect of DFT density functionals and dispersion correction on an imidazolium-based dicationic ionic liquid (DIL) using ab initio molecular dynamics simulations. To achieve this purpose, the electronic structures, as well as the structural and dynamical properties of [C3(mim)2][NTF2]2 DIL, were obtained using the BLYP and PBE functionals, both with and without D3-correction, and the results were compared with experimental values. Radial distribution functions and structure factors revealed that applying D3-correction increases the interaction between the anion and hydrogen atoms of the rings and side chains. The simulation of the studied DIL with the BLYP-D3 functional depicted lower structural heterogeneity compared to the other functionals. Analysis of Voronoi tessellation and linkage chain conformations showed a reduction in the aggregation of the linkage alkyl chains in the presence of D3-correction, which is more pronounced in the BLYP functional than in PBE. Additionally, it was observed that the probability of forming a hydrogen-bond network depends on both the type of used density functionals and applying dispersion correction. The results of dynamical properties, such as the self-diffusion coefficients, velocity autocorrelation function, and van Hove correlation function, as well as ion pair, ion cage, and hydrogen bond dynamics, indicated that applying D3-correction in both density functionals leads to an increase in the dynamics of the studied DIL. Additionally, the ratio of self-diffusion coefficients of the anion to the cation in the BLYP functional is closer to experimental values compared to the PBE functional. Furthermore, the electronic structure, including dipole moment distribution, and also infrared (IR) and power spectra were studied. Applying D3-correction and the type of density functionals have a significant effect on the dipole moment distribution of ions. Moreover, the results of IR and power spectra demonstrated that only in the BLYP functional, by applying D3-correction, the hydrogen bonding between the anion and the hydrogen atoms of the cation is strengthened at high wavenumbers. Thus, we conclude that applying D3 correction to both the BLYP and PBE density functionals improves the accuracy in describing the various properties of the studied system. Overall, the evaluation of different structural, dynamical, and vibrational properties of [C3(mim)2][NTF2]2 DIL suggests that the BLYP-D3 density functional may be the best choice among the studied density functionals.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
2
|
Chowdhury T, Chatterjee S, Deshmukh SH, Bagchi S. A Systematic Study on the Role of Hydrogen Bond Donors in Dictating the Dynamics of Choline-Based Deep Eutectic Solvents. J Phys Chem B 2023; 127:7299-7308. [PMID: 37561654 DOI: 10.1021/acs.jpcb.3c02191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Deep eutectic solvents, promising green alternatives to conventional solvents, consist of a hydrogen bond donor and a hydrogen bond acceptor. The hydrogen bonding components in deep eutectic solvents form an extended hydrogen bonding network, which can be tuned to specific applications by changing the hydrogen bond donors. In this work, we have changed the hydrogen bond donor from a diol to a dicarboxylic acid by systematically replacing a hydroxyl group with an acid group one at a time to investigate the solvation structure and dynamics of the deep eutectic systems. Using a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations, we compared the spectral diffusion and orientational relaxation dynamics of three deep eutectic systems using the vibrational responses of a dissolved anion. Our results indicate that although the solvation structures are marginally different across the systems, distinct differences are present in the solvent fluctuation and solute reorientation dynamics. This work provides a detailed molecular understanding of carboxylic-acid-based deep eutectic systems and how they differ from alcohol-based deep eutectic systems.
Collapse
Affiliation(s)
- Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samadhan H Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ghanta KP, Mondal S, Hajari T, Bandyopadhyay S. Impact of an Ionic Liquid on Amino Acid Side Chains: A Perspective from Molecular Simulation Studies. J Chem Inf Model 2023; 63:959-972. [PMID: 36721873 DOI: 10.1021/acs.jcim.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ionic liquids (ILs) are known to modify the structural stability of proteins. The modification of the protein conformation is associated with the accumulation of ILs around the amino acid (AA) side chains and the nature of interactions between them. To understand the microscopic picture of the structural arrangements of ILs around the AA side chains, room temperature molecular dynamics (MD) simulations have been carried out in this work with a series of hydrophobic, polar and charged AAs in aqueous solutions containing the IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) at 2 M concentration. The calculations revealed distinctly nonuniform distribution of the IL components around different AAs. In particular, it is demonstrated that the BMIM+ cations preferentially interact with the aromatic AAs through favorable stacking interactions between the cation imidazolium head groups and the aromatic AA side chains. This results in preferential parallel alignments and enhanced population of the cations around the aromatic AAs. The potential of mean force (PMF) calculations revealed that such favorable stacking interactions provide greater stability to the contact pairs (CPs) formed between the aromatic AAs and the IL cations as compared to the other AAs. It is further quantified that for most of the AAs (except the cationic ones), a favorable enthalpy contribution more than compensates for the entropy cost to form stable CPs with the IL cations. These findings are likely to provide valuable fundamental information toward understanding the effects of ILs on protein conformational stability.
Collapse
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Timir Hajari
- Department of Chemistry, City College, Kolkata700009, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
4
|
Biswas A, Mallik BS. Direct Correlation between Short-Range Vibrational Spectral Diffusion and Localized Ion-Cage Dynamics of Water-in-Salt Electrolytes. J Phys Chem B 2023; 127:236-248. [PMID: 36575973 DOI: 10.1021/acs.jpcb.2c04391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The molecular dynamics simulations of a "water-in-salt" electrolyte, lithium bis(trifluoromethyl sulfonyl) imide (LiNTf2), with a varying concentration range of 3 to 20 m were performed to establish a direct connection between a dynamic property like the ion-cage lifetime with the short-range vibrational stretching frequency shift of the used probe, HOD. The properties reported here are compared to that obtained from experiments performed at the same concentrations. The time-series wavelet transform was adopted as a preferable mathematical tool for calculating the instantaneous fluctuating frequencies of the probe O-D stretch mode and the concentration-dependent vibrational stretch spectral signature based on the variable functions associated with a particular chemical bond derived from classical molecular dynamics trajectories. The decay time constants of frequency fluctuations and the lifetime of the ion cage (τIC) were estimated as a function of salt concentration. Herein, we emphasize the correlation between the slowest time constant (τ3) of the decay of O-D stretch frequency fluctuations and the timescales associated with the lifetime of ion cages (τIC). The results exhibit that the existing relationships were also concentration-dependent. Therefore, this study highlights the connection between the ionic motions that regulate the overall system dynamics with the short-range vibrational frequency shift of the used probe, which was used similar to experiments. It also provides an understanding of the interionic interactions and the dynamical and spectral properties of the electrolytic mixtures. We establish a direct correlation between short-range frequency profile and localized ion-cage lifetime, which can fill the gap of understanding between viscosity, vibrational frequency, and ion-cage dynamics of electrolytes.
Collapse
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502285, Telangana, India
| |
Collapse
|
5
|
Zhu Q, Ge Y, Li W, Ma J. Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J Chem Theory Comput 2023; 19:396-411. [PMID: 36592097 DOI: 10.1021/acs.jctc.2c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polarization plays important roles in charged and hydrogen bonding containing systems. Much effort ranging from the construction of physics-based models to quantum mechanism (QM)-based and machine learning (ML)-assisted models have been devoted to incorporating the polarization effect into the conventional force fields at different levels, such as atomic and coarse grained (CG). The application of polarizable force fields or polarization models was limited by two aspects, namely, computational cost and transferability. Different from physics-based models, no predetermining parameters were required in the QM-based approaches. Taking advantage of both the accuracy of QM calculations and efficiency of molecular mechanism (MM) and ML, polarization effects could be treated more efficiently while maintaining the QM accuracy. The computational cost could be reduced with variable electrostatic parameters, such as the charge, dipole, and electronic dielectric constant with the help of linear scaling fragmentation-based QM calculations and ML models. Polarization and entropy effects on the prediction of partition coefficient of druglike molecules are demonstrated by using both explicit or implicit all-atom molecular dynamics simulations and machine learning-assisted models. Directions and challenges for future development are also envisioned.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Yang Ge
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
6
|
Biswas A, Mallik BS. Molecular Simulation-Guided Spectroscopy of Imidazolium-Based Ionic Liquids and Effects of Methylation on Ion-Cage and -Pair Dynamics. J Phys Chem B 2022; 126:8838-8850. [PMID: 36264223 DOI: 10.1021/acs.jpcb.2c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Classical molecular dynamics simulations were performed to assess an atomistic interpretation of the ion-probe structural interactions in two typical ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIm][NTf2] and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [BDimIm][NTf2] through computational ultrafast spectroscopy. The nitrile stretching vibrations of the thiocyanate anion, [SCN]-, serve as the local mode of the ultrafast system dynamics within the imidazolium-based ionic liquid environment. The wavelet transform of classical trajectories determines the time-varying fluctuating frequencies and the stretch spectral signatures of SCN- in the normalized distribution. However, computational modeling of the two-dimensional (2D) spectra from the wavelet-derived vibrational frequencies yields time evolution of the local molecular structure along with the varied time-dependent dynamics of the spectral diffusion process. We calculated the frequency-frequency correlation functions (FFCFs), time correlations associated with the ion-pair and -cage dynamics, and mean square displacements as a function of time, depicting diffusive dynamics. The calculated results based on the pair correlation functions and the distribution of atomic density suggest that the hydrogen and methylated carbon at the two-position of the imidazolium ring of [BMIm] and [BDimIm] cations, respectively, strongly interact with the probe through the N of the thiocyanate anion rather than the S atom. The center-of-mass center-of-mass (COM-COM) cation-probe radial distribution functions (RDFs) in conjunction with the site-specific structural analysis further reveal well-structured interactions of the thiocyanate ion and [BMIm]+ cation rather than the [BDimIm] cation. In contrast, the anion-probe COM-COM RDFs depict weak interactive associations within the vibrational probe [SCN]- and [NTf2]- ions. Methylation at the two-position of the imidazolium ring predicts slower structural reorganization and breaking and reformation dynamics of the ion pairs and cages within the ionic liquid framework.
Collapse
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502285, Telangana, India
| |
Collapse
|
7
|
Dynamics in tris(pentafluoroethyl)trifluorophosphate (FAP) anion based ionic liquids: A 2D-IR study with tungsten hexacarbonyl. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Anggraini Y, Yusuf A, Wonorahardjo S, Kurnia D, Viridi S, Magdalena Sutjahja I. Role of C2 Methylation and Anion Type on the Physicochemical and Thermal Properties of Imidazolium-Based Ionic Liquids. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
Salehi HS, Moultos OA, Vlugt TJH. Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. J Phys Chem B 2021; 125:12303-12314. [PMID: 34719232 PMCID: PMC8591605 DOI: 10.1021/acs.jpcb.1c07796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Hydrophobic deep
eutectic solvents (DESs) have recently gained
much attention as water-immiscible solvents for a wide range of applications.
However, very few studies exist in which the hydrophobicity of these
DESs is quantified. In this work, the interfacial properties of hydrophobic
DESs with water were computed at various temperatures using molecular
dynamics simulations. The considered DESs were tetrabutylammonium
chloride–decanoic acid (TBAC–dec) with a molar ratio
of 1:2, thymol–decanoic acid (Thy–dec) with a molar
ratio of 1:2, and dl-menthol–decanoic acid (Men–dec)
with a molar ratio of 2:1. The following properties were investigated
in detail: interfacial tensions, water-in-DES solubilities (and salt-in-water
solubilities for TBAC–dec/water), density profiles, and the
number densities of hydrogen bonds. Different ionic charge scaling
factors were used for TBAC–dec. Thy–dec and Men–dec
showed a high level of hydrophobicity with negligible computed water-in-DES
solubilities. For charge scaling factors of 0.7 and 1 for the thymol
and decanoic acid components of Thy–dec, the computed interfacial
tensions of the DESs are in the following order: TBAC–dec (ca.
4 mN m–1) < Thy–dec (20 mN m–1) < Men–dec (26 mN m–1). The two sets
of charge scaling factors for Thy–dec did not lead to different
density profiles but resulted in considerable differences in the DES/water
interfacial tensions due to different numbers of decanoic acid–water
hydrogen bonds at the interfaces. Large peaks were observed for the
density profiles of (the hydroxyl oxygen of) decanoic acid at the
interfaces of all DES/water mixtures, indicating a preferential alignment
of the oxygen atoms of decanoic acid toward the aqueous phase.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
10
|
Celebi AT, Dawass N, Moultos OA, Vlugt TJH. How sensitive are physical properties of choline chloride-urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood-Buff theory. J Chem Phys 2021; 154:184502. [PMID: 34241035 DOI: 10.1063/5.0049064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep eutectic solvents (DESs) have emerged as a cheaper and greener alternative to conventional organic solvents. Choline chloride (ChCl) mixed with urea at a molar ratio of 1:2 is one of the most common DESs for a wide range of applications such as electrochemistry, material science, and biochemistry. In this study, molecular dynamics simulations are performed to study the effect of urea content on the thermodynamic and transport properties of ChCl and urea mixtures. With increased mole fraction of urea, the number of hydrogen bonds (HBs) between cation-anion and ion-urea decreases, while the number of HBs between urea-urea increases. Radial distribution functions (RDFs) for ChCl-urea and ChCl-ChCl pairs shows a significant decrease as the mole fraction of urea increases. Using the computed RDFs, Kirkwood-Buff Integrals (KBIs) are computed. KBIs show that interactions of urea-urea become stronger, while interactions of urea-ChCl and ChCl-ChCl pairs become slightly weaker with increasing mole fraction of urea. All thermodynamic factors are found larger than one, indicating a non-ideal mixture. Our results also show that self- and collective diffusivities increase, while viscosities decrease with increasing urea content. This is mainly due to the weaker interactions between ions and urea, resulting in enhanced mobilities. Ionic conductivities exhibit a non-monotonic behavior. Up to a mole fraction of 0.5, the ionic conductivities increase with increasing urea content and then reach a plateau.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Noura Dawass
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
11
|
Avula NVS, Karmakar A, Kumar R, Balasubramanian S. Efficient Parametrization of Force Field for the Quantitative Prediction of the Physical Properties of Ionic Liquid Electrolytes. J Chem Theory Comput 2021; 17:4274-4290. [PMID: 34097391 DOI: 10.1021/acs.jctc.1c00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of transport properties of room-temperature ionic liquids from nonpolarizable force field-based simulations has long been a challenge. The uniform charge scaling method has been widely used to improve the agreement with the experiment by incorporating the polarizability and charge transfer effects in an effective manner. While this method improves the performance of the force fields, this prescription is ad hoc in character; further, a quantitative prediction is still not guaranteed. In such cases, the nonbonded interaction parameters too need to be refined, which requires significant effort. In this work, we propose a three-step semiautomated refinement procedure based on (1) atomic site charges obtained from quantum calculations of the bulk condensed phase; (2) quenched Monte Carlo optimizer to shortlist suitable force field candidates, which are then tested using pilot simulations; and (3) manual refinement to further improve the accuracy of the force field. The strategy is designed in a sequential manner with each step improving the accuracy over the previous step, allowing the users to invest the effort commensurate with the desired accuracy of the refined force field. The refinement procedure is applied on N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI), a front-runner as an electrolyte for electric double-layer capacitors and single-molecule-based devices. The transferability of the refined force field is tested on N,N-dimethyl-N-ethyl-N-methoxyethoxyethylammonium bis(trifluoromethanesulfonyl)imide (N112,2O2O1-TFSI). The refined force field is found to be better at predicting both structural and transport properties compared to the uniform charge scaling procedure, which showed a discrepancy in the X-ray structure factor. The refined force field showed quantitative agreement with structural (density and X-ray structure factor) and transport properties-diffusion coefficients, ionic conductivity, and shear viscosity over a wide temperature range, building a case for the wide adoption of the procedure.
Collapse
Affiliation(s)
- Nikhil V S Avula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anwesa Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Rahul Kumar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
12
|
Thermal Stability and Decomposition Kinetics of 1-Alkyl-2,3-Dimethylimidazolium Nitrate Ionic Liquids: TGA and DFT Study. MATERIALS 2021; 14:ma14102560. [PMID: 34069267 PMCID: PMC8155988 DOI: 10.3390/ma14102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022]
Abstract
The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.
Collapse
|
13
|
From hydrophobity to hydrophilicity: Design, synthesis, structural transformation and distinguishment of highly symmetric 1,3-bis(carboxymethyl)imidazolium bis(trifluoromethyl)sulfonyl)amide ionic liquids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
S Salehi H, Celebi AT, Vlugt TJH, Moultos OA. Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. J Chem Phys 2021; 154:144502. [PMID: 33858163 DOI: 10.1063/5.0047369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 1:2, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components: HBD > anion > cation. Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
15
|
Bonab PJ, Esrafili MD, Ebrahimzadeh AR, Sardroodi JJ. Molecular dynamics simulations of choline chloride and phenyl propionic acid deep eutectic solvents: Investigation of structural and dynamics properties. J Mol Graph Model 2021; 106:107908. [PMID: 33831610 DOI: 10.1016/j.jmgm.2021.107908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The prediction of deep eutectic composition is hard and so far, has been distinguished by trial and error. Therefore, in this work, molecular dynamics simulations were performed for specifying the composition of the eutectic point of phenyl propionic acid (Phpr) and choline chloride (ChCl) mixtures. The distinctive properties of the Phpr and ChCl eutectic mixture at the composition of the eutectic point were investigated and were compared to other eutectic mixtures with the different mole fractions of Phpr and ChCl. Structural properties such as radial distribution function (RDF), coordination number, hydrogen-bond number, interaction energies, and dipole moment of species, as well as dynamical properties such as mean square displacement (MSD), viscosity, and self-diffusion coefficient were analyzed. The obtained results of structural properties indicated that each chloride anion is surrounded by two Phpr molecules for deep eutectic point states that is in good agreement with available experimental reports. Moreover, the viscosity of studied mixtures evaluated by the Green-Kubo method was found to be consistent with the reported experimental data. Besides, the stress-autocorrelation function (SACF) and convergency of viscosity with time were calculated. Finally, the eutectic point could be detected by the changes in the trends of total van der Waals interaction energies and the viscosity.
Collapse
Affiliation(s)
- Parisa Jahanbakhsh Bonab
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Science and Engineering Research Group (MSERG), Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Science and Engineering Research Group (MSERG), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Science and Engineering Research Group (MSERG), Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
16
|
Brehm M, Thomas M. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021; 26:1875. [PMID: 33810337 PMCID: PMC8036805 DOI: 10.3390/molecules26071875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities-it is not limited to Hartree-Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| | | |
Collapse
|
17
|
Tsyrenova A, Farooq MQ, Anthony SM, Mollaeian K, Li Y, Liu F, Miller K, Ren J, Anderson JL, Jiang S. Unique Orientation of the Solid-Solid Interface at the Janus Particle Boundary Induced by Ionic Liquids. J Phys Chem Lett 2020; 11:9834-9841. [PMID: 33170707 DOI: 10.1021/acs.jpclett.0c02813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reveals the unique role on Janus particles of the solid-solid interface at the boundary in determining particle interactions and assembly. In an aqueous ionic liquid (IL) solution, Janus spheres adopt intriguing orientations with their boundaries pinned on the glass substrate. It was further discovered that the orientation was affected by the particle amphiphilicity as well as the chemical structure and concentration of the IL. Further characterization suggests that the adsorption on the hydrophilic side is due to both an electrostatic interaction and hydrogen bonding, while adsorption on the hydrophobic side is due to hydrophobic attraction. Through the concerted interplay of all these interactions, the amphiphilic boundary may attract an excessive amount of IL cations, which guide the unique orientations of the Janus spheres. The results highlight the importance of the Janus boundary that has not been recognized previously. Adsorption at the solid-solid interfaces may inspire new applications in areas such as separation and catalysis.
Collapse
Affiliation(s)
- Ayuna Tsyrenova
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Muhammad Q Farooq
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Stephen M Anthony
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Keyvan Mollaeian
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Yifan Li
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Fei Liu
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kyle Miller
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Mason TG, Seeger ZL, Nguyen ALP, Fujita K, Izgorodina EI. Predicting Entropic Effects of Water Mixing with Ionic Liquids Containing Anions of Strong Hydrogen Bonding Ability: Role of the Cation. J Phys Chem B 2020; 124:9182-9194. [PMID: 33007160 DOI: 10.1021/acs.jpcb.0c07732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic liquids (ILs) such as choline dihydrogen phosphate exhibit an extraordinary solubilizing ability for proteins such as cytochrome C when mixed with 20 wt % water. Most widely used imidazolium-based ionic liquids coupled with dihydrogen phosphate do not exhibit the same solubilizing properties, suggesting that a multifunctional cation such as choline might play a key role in enhancing these properties of ionic liquid mixtures with water. In this theoretical work, we compare intermolecular interactions between the water molecule and ionic liquid ions in two ion-paired clusters of choline- and 1-butyl-3-methyl-imidazolium-based ionic liquids coupled with acetate, dihydrogen phosphate, and mesylate. Gibbs free energy (GFE) of solvation of water in these ionic liquids was calculated. Incorporation of a water molecule into ionic liquid clusters was accompanied by negative GFEs of solvation in both types of cations. These results were in good agreement with previously reported experimental GFEs of solvation of water in ILs. Compared to imidazolium-based clusters, strong interionic interactions of choline ionic liquids resulted in more negative GFEs due to their smaller deformation upon the addition of a water molecule, with dihydrogen phosphate and mesylate predicting the lowest GFEs of -30.1 and -43.5 kJ/mol-1, respectively. Lower GFEs of solvation of water in choline-based clusters were also accompanied with smaller entropic penalties, suggesting that water easily incorporates itself into the existing ionic network. Analysis of the intramolecular bonds within the water molecule showed that the choline hydroxyl group donates electron density to the neighboring water molecule, leading to additional polarization. The predicted infrared spectra of clusters of ionic liquids with water showed a pronounced red shift due to strongly polarized O-H bonds, in excellent agreement with the experimentally measured infrared spectra of ionic liquid mixtures with water. Increased polarization of water in choline-based ionic liquids undoubtedly creates more effective solvents for stabilizing biological molecules such as proteins.
Collapse
Affiliation(s)
- Thomas G Mason
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Anh L P Nguyen
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Kyoko Fujita
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Yang D, Huang Y, Wang X, He R, Zhou G, Chen X, Yang Z. Different Hydrogen Bond Changes Driven by Surface Segregation Behavior of Imidazolium-Based Ionic Liquid Mixture at the Liquid-Vacuum Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11798-11808. [PMID: 32962350 DOI: 10.1021/acs.langmuir.0c01501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, molecular dynamics (MD) simulations were carried out to study the behaviors of a binary ionic liquid (IL) mixture consisting of equimolar [C2C1Im][BF4] and [C4C1Im][BF4], as well as two corresponding pure ILs, at the liquid-vacuum interface. Our simulation results show that the competition of nonpolar interactions between different alkyl chains of two cations results in an obvious surface segregation behavior of the IL mixture at the interface, indicating an enhanced aggregation of the [C4C1Im]+ cations but a weakened aggregation of the [C2C1Im]+ cations at the outermost surface. More interestingly, different hydrogen bond (HB) changes between two imidazolium cations at the interface can be driven by such surface segregation behavior, where the [C2C1Im]+ cations rather than the [C4C1Im]+ ones have more and stronger HBs with the [BF4]- anions by comparison with the corresponding pure ILs at the interface. Meanwhile, it is interesting to find that such a stronger HB would lower the rotations of the imidazolium rings of interfacial [C2C1Im]+ cations. By contrast, the [C4C1Im]+ cations at the outermost surface rotate faster owing to their weaker HB. In addition, the orientation analysis uncovers that there is a major decrease for the orderliness of interfacial [C2C1Im]+ cations, but a minor decrease for that of interfacial [C4C1Im]+ cations, from the pure IL to the IL mixture. Such distinct results are closely related to the surface segregation between the [C2C1Im]+ and [C4C1Im]+ cations in the IL mixture and their interfacial HB properties. Thus, our simulation results afford a deep insight into the surface segregation effect on the HB behavior of the imidazolium-based IL mixture at liquid-vacuum interface.
Collapse
Affiliation(s)
- Deshuai Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yiping Huang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xueping Wang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Ruiyao He
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xiangshu Chen
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
20
|
Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J. Dissolving Cellulose in 1,2,3-Triazolium- and Imidazolium-Based Ionic Liquids with Aromatic Anions. Molecules 2020; 25:E3539. [PMID: 32748878 PMCID: PMC7435399 DOI: 10.3390/molecules25153539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Julian Radicke
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Martin Pulst
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Farzaneh Shaabani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Jörg Kressler
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| |
Collapse
|
21
|
Chaumont A, Engler E, Schurhammer R. Is Charge Scaling Really Mandatory when Developing Fixed-Charge Atomistic Force Fields for Deep Eutectic Solvents? J Phys Chem B 2020; 124:7239-7250. [DOI: 10.1021/acs.jpcb.0c04907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A. Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, F-67000 Strasbourg, France
| | - E. Engler
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, F-67000 Strasbourg, France
| | - R. Schurhammer
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, F-67000 Strasbourg, France
| |
Collapse
|
22
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Li S, Jiang H, Hua M, Pan X, Li H, Guo X, Zhang H. Theoretical and experimental studies on the thermal decomposition of 1-butyl-3-methylimidazolium dibutyl phosphate. J Loss Prev Process Ind 2020. [DOI: 10.1016/j.jlp.2020.104162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
25
|
Wang Y, Jarošová R, Swain GM, Blanchard GJ. Characterizing the Magnitude and Structure-Dependence of Free Charge Density Gradients in Room-Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3038-3045. [PMID: 32148037 DOI: 10.1021/acs.langmuir.0c00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 μm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Schröder C, Lyons A, Rick SW. Polarizable MD simulations of ionic liquids: How does additional charge transfer change the dynamics? Phys Chem Chem Phys 2020; 22:467-477. [DOI: 10.1039/c9cp05478b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new model for treating charge transfer in ionic liquids is developed and applied to 1-ethyl-3-methylimidazolium tetrafluoroborate. The model allows for us to examine the roles of charge transfer, polarizability, and charge scaling effects on the dynamics of ionic liquids.
Collapse
Affiliation(s)
- Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Alex Lyons
- University of New Orleans
- Department of Chemistry
- New Orleans
- USA
| | - Steven W. Rick
- University of New Orleans
- Department of Chemistry
- New Orleans
- USA
| |
Collapse
|
27
|
Izadyar M, Rezaeian M, Victorov A. Theoretical study on the absorption of carbon dioxide by DBU-based ionic liquids. Phys Chem Chem Phys 2020; 22:20050-20060. [PMID: 32936155 DOI: 10.1039/d0cp03612a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this article, 20 ns molecular dynamic (MD) simulations and density functional theory (DFT) were used to investigate the absorption of CO2 molecules by some functionalized 1,8-diazabicyclo[5,4,0]-udec-7-ene (DBU)-based ILs. According to the MD results, the highest coordination number for NC is observed in the case of [DBUH+][Im-], which indicates that the functionalization of the imidazole anion by different alkyl groups decreases the interaction ability of the anion with CO2 molecules. The addition of water molecules to the ILs decreases the ability of the anion to interact with CO2 because of the hydrogen bond formation between the imidazole anions and water. Two different paths were proposed for CO2 absorption by the ILs, and the effect of alkyl groups on the kinetics and thermodynamics of the reaction was analyzed by using the M06-2X functional at the 6-311++G(d,p) level of theory in the gas phase and water. On the basis of the results, CO2 absorption is more favorable in [DBUH+][Im-], thermodynamically. Kinetic parameters show that the alkylation of the imidazole anion by ethyl, propyl, iso-propyl, and phenyl groups decreases the rate of CO2 absorption, because of the steric and electron-withdrawing effect of different alkyl groups. In the presence of water molecules, the lowest activation Gibbs energy is related to [DBUH+][Im-], which confirms the greater ability of this IL in CO2 absorption.
Collapse
Affiliation(s)
- Mohammad Izadyar
- Computational Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mojtaba Rezaeian
- Computational Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alexey Victorov
- Department of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
28
|
Celebi AT, Vlugt TJH, Moultos OA. Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline Solutions from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:11014-11025. [PMID: 31794220 PMCID: PMC6935864 DOI: 10.1021/acs.jpcb.9b09729] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Deep eutectic solvents (DESs) are a new generation of green solvents, which are considered an environmentally friendly alternative to ionic liquids and volatile organic compounds. The addition of controlled amounts of water to DESs has a significant effect on their microscopic structure and thus on their thermodynamic and transport properties. In this way, DESs can be modified, leading to solvents with improved characteristics. In this work, molecular dynamics (MD) simulations are performed to obtain a better understanding of the relation between the microscopic structure, molecular interactions, and thermophysical properties of aqueous reline and ethaline solutions at temperatures ranging from 303.15 to 363.15 K. For both reline and ethaline solutions, the hydrogen bond (HB) networks disappear with increasing mass fraction of water, and the intensity of radial distribution function (RDF) peaks decreases. For a mass fraction of water of 40%, most of the HBs between the compounds of reline and ethaline are broken, and DESs are fully dissolved in water. Consequently, a monotonic decrease in viscosities and an increase in self-diffusion coefficients are observed. Ionic conductivities show a nonmonotonic behavior with increasing water content. Up to 60% water mass fraction, the ionic conductivities increase with increasing water content. A further increase in the mass fraction of water decreases conductivities. For all studied systems, the HB network and the peaks of RDFs show relatively small changes for water mass fractions below 5% and beyond 40%. The MD results show that viscosities decrease with temperature, while diffusivities and ionic conductivities increase. The effect of the temperature on the structure of DES-water mixtures is negligible.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|
29
|
|
30
|
Yuan C, Zhang X, Ren Y, Feng S, Liu J, Wang J, Su L. Temperature- and pressure-induced phase transitions of choline chloride-urea deep eutectic solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Jiang K, Liu L, Liu X, Zhang X, Zhang S. Insight into the Relationship between Viscosity and Hydrogen Bond of a Series of Imidazolium Ionic Liquids: A Molecular Dynamics and Density Functional Theory Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kun Jiang
- CAS, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- CAS, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaochun Zhang
- CAS, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Suojiang Zhang
- CAS, Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
32
|
Omari I, Randhawa P, Randhawa J, Yu J, McIndoe JS. Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1750-1757. [PMID: 31218572 DOI: 10.1007/s13361-019-02252-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The abundance of an ion in an electrospray ionization mass spectrum is dependent on many factors beyond just solution concentration. Even in cases where the analytes of interest are permanently charged (under study here are ammonium and phosphonium ions) and do not rely on protonation or other chemical processes to acquire the necessary charge, factors such as cation structure, molecular weight, solvent, and the identity of the anion can affect results. Screening of a variety of combinations of cations, anions, and solvents provided insight into some of the more important factors. Rigid cations and anions that conferred high conductivity tended to provide the highest responses. The solvent that most closely reflected actual solution composition was acetonitrile, while methanol, acetonitrile/water, and dichloromethane produced a higher degree of discrimination between different ions. Functional groups that had affinity for the solvent tended to depress response. These observations will provide predictive power when accounting for analytes that for reasons of high reactivity can not be isolated.
Collapse
Affiliation(s)
- Isaac Omari
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Parmissa Randhawa
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Jaiya Randhawa
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Jenny Yu
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada.
| |
Collapse
|
33
|
Naik PK, Paul S, Banerjee T. Physiochemical Properties and Molecular Dynamics Simulations of Phosphonium and Ammonium Based Deep Eutectic Solvents. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00903-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Barba MI, Larrechi MS, Coronas A. Quantitative analysis of free water in ionic liquid-water mixtures. Talanta 2019; 199:407-414. [PMID: 30952277 DOI: 10.1016/j.talanta.2019.02.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022]
Abstract
The purpose of this paper is to determine the amount of water in ionic liquid aqueous solutions that does not form hydrogen bonds (that is to say, free water). Here, the amount of free water was determined in mixtures of water and four ionic liquids based on the imidazolium cation: 1-Butyl-3methylimidazolium acetate, 1-Butyl-3methylimidazolium bromide, 1-Butyl-3methylimidazolium chloride, and 1-3, dimethyl-imidazolium chloride. Their ionic liquid mass fraction was between 0% and 80%. The amount of free water in the mixtures was determined from the concentration profiles obtained by analysing the near infrared spectra of the mixtures between 800 and 1070 nm using multivariate curve resolution-alternating least squares. The absorption band characteristic of the OH- group in the water is present in the spectral region considered. The analysis was done at three temperatures: 298.15, 313.15 and 333.15 K. The major conclusions obtained from a comparative analysis of the results are these: a) the length of the alkyl chain significantly affects the hydrophobicity of the cations when the molality of the ionic liquid in the solutions is higher than 1.435 mol/kg. b) for the solutions with the same cation, the amount of free water in the chloride solutions is lower than in the acetate and bromide solutions when the temperature is lower than 333.15 K. At this temperature, the capacity of acetate and bromide solutions to interact with water is the same. Between 298.15 and 333.15 K, the ionic liquid concentration at which there is no free water in the solutions ranges between 62.70% and 59.59% for the 1-3, dimethylimidazolium chloride, 66.72% and 87.75% for the 1-Butyl-3methylimidazolium chloride, 69.76% and 78.36% for the -1-Butyl-3methylimidazolium bromide and between 69.77% and 78.26% for the 1-Butyl-3methylimidazolium acetate. So, the ionic liquid with the greatest capacity to retain water is the 1-3, dimethylimidazolium chloride.
Collapse
Affiliation(s)
- M Isabel Barba
- Group of Research in Applied Thermal Engineering-CREVER. Mechanical Engineering Dept., Universitat Rovira i Virgili, Tarragona, Spain
| | - M Soledad Larrechi
- Group of Research in Applied Thermal Engineering-CREVER. Mechanical Engineering Dept., Universitat Rovira i Virgili, Tarragona, Spain; Analytical and Organic Chemistry Dept., Universitat Rovira i Virgili, Tarragona, Spain.
| | - Alberto Coronas
- Group of Research in Applied Thermal Engineering-CREVER. Mechanical Engineering Dept., Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
35
|
Abdurrokhman I, Elamin K, Danyliv O, Hasani M, Swenson J, Martinelli A. Protic Ionic Liquids Based on the Alkyl-Imidazolium Cation: Effect of the Alkyl Chain Length on Structure and Dynamics. J Phys Chem B 2019; 123:4044-4054. [PMID: 30995045 DOI: 10.1021/acs.jpcb.9b01274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protic ionic liquids are known to form extended hydrogen-bonded networks that can lead to properties different from those encountered in the aprotic analogous liquids, in particular with respect to the structure and transport behavior. In this context, the present paper focuses on a wide series of 1-alkyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [HC nIm][TFSI], with the alkyl chain length ( n) on the imidazolium cation varying from ethyl ( n = 2) to dodecyl ( n = 12). A combination of several methods, such as vibrational spectroscopy, wide-angle X-ray scattering (WAXS), broadband dielectric spectroscopy, and 1H NMR spectroscopy, is used to understand the correlation between local cation-anion coordination, nature of nanosegregation, and transport properties. The results indicate the propensity of the -NH site on the cation to form stronger H-bonds with the anion as the alkyl chain length increases. In addition, the position and width of the scattering peak q1 (or the pre-peak), resolved by WAXS and due to the nanosegregation of the polar from the nonpolar domains, are clearly dependent on the alkyl chain length. However, we find no evidence from pulsed-field gradient NMR of a proton motion decoupled from molecular diffusion, hypothesized to be facilitated by the longer N-H bonds localized in the segregated ionic domains. Finally, for all protic ionic liquids investigated, the ionic conductivity displays a Vogel-Fulcher-Tammann dependence on inverse temperature, with an activation energy Ea that also depends on the alkyl chain length, although not strictly linearly.
Collapse
|
36
|
Sánchez-Badillo J, Gallo M, Guirado-López RA, López-Lemus J. Thermodynamic, structural and dynamic properties of ionic liquids [C 4mim][CF 3COO], [C 4mim][Br] in the condensed phase, using molecular simulations. RSC Adv 2019; 9:13677-13695. [PMID: 35519576 PMCID: PMC9063925 DOI: 10.1039/c9ra02058f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
In this work a series of thermodynamic, structural, and dynamical properties for the 1-butyl-3-methylimidazolium trifluoroacetate ([C4mim][CF3COO]) and 1-butyl-3-methylimidazolium bromide, ([C4mim][Br]) ionic liquids (ILs) were calculated using Non-polarizable Force Fields (FF), parameterized using a methodology developed previously within the research group, for condensed phase applications. Properties such as the Vapor-Liquid Equilibrium (VLE) curve, critical points (ρ c, T c), Radial, Spatial and Combined Distribution Functions and self-diffusion coefficients were calculated using Equilibrium Molecular Dynamics simulations (EMD); other properties such as shear viscosities and thermal conductivities were calculated using Non-Equilibrium Molecular Dynamics simulations (NEMD). The results obtained in this work indicated that the calculated critical points are comparable with those available in the literature. The calculated structural information for these two ILs indicated that the anions interact mainly with hydrogen atoms from both the imidazolium ring and the methyl chain; the bromide anion displays twice the hydrogen coordination number than the oxygen atoms from the trifluoroacetate anion. Furthermore, Non-Covalent interactions (NCI index), determined by DFT calculations, revealed that some hydrogen bonds in the [C4mim][Br] IL displayed similar strength to those in the [C4mim][CF3COO] IL, in spite of the shorter O--H distances found in the latter IL. The majority of the calculated transport properties presented reasonable agreement with the experimental available data. Nonetheless, the self-diffusion coefficients determined in this work are under-estimated with respect to experimental values; however, by escalating the electrostatic atomic charges for the anion and cation to ±0.8e, only for this property, a remarkable improvement was obtained. Experimental evidence was recovered for most of the calculated properties and to the best of our knowledge, some new predictions were done mainly in thermodynamic states where data are not available. To validate the FF, developed previously within the research group, dynamic properties were also evaluated for a series of ILs such as [C4mim][PF6], [C4mim][BF4], [C4mim][OMs], and [C4mim][NTf2] ILs.
Collapse
Affiliation(s)
- Joel Sánchez-Badillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Zona Universitaria Av. Manuel Nava No. 6 San Luis Potosí C.P. 78210 Mexico
| | - Marco Gallo
- Tecnológico Nacional de México/ITCJ Av. Tecnológico No. 1340, Cd. Juárez Chihuahua C.P. 32500 Mexico
| | - Ricardo A Guirado-López
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí Álvaro Obregón No. 64 San Luis Potosí C.P. 78000 Mexico
| | - Jorge López-Lemus
- Facultad de Ciencias, Universidad Autónoma del Estado de México Toluca Estado de México C.P. 50000 Mexico
| |
Collapse
|
37
|
Ebrahimi S, Kowsari MH. Fine probing the effect of replacing [PF 6] - with [PF 3(C 2F 5) 3] - on the local structure and nanoscale organization of [bmim] +-based ionic liquids using MD simulation. Phys Chem Chem Phys 2019; 21:3195-3210. [PMID: 30681093 DOI: 10.1039/c8cp07829g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative all-atom molecular dynamics simulations are used to study the microscopic local structure and interionic interactions of two ionic liquids (ILs) composed of the 1-butyl-3-methylimidazolium cation, [bmim]+, coupled with the hexafluorophosphate, [PF6]-, or tris(pentafluoroethyl)trifluorophosphate, [FAP]-, anions. Respective distribution functions clearly reveal that the structural correlations between the cation and anion decrease when (i) replacing [PF6]- with [FAP]-, (ii) scaling the partial atomic charges, and (iii) considering the anion's structural flexibility versus rigidity. Replacement of [PF6]- with [FAP]- expands the nonpolar domains totally and causes the decreasing of the three-dimensional polar networks as well as the diminishing of the nano-aggregation of cation side chains. Current simulations show that with increasing the anion size and its charge delocalization, the probability of the in-plane cation-anion conformation, its related hydrogen bond acceptor ability, and the cation-cation π-π interaction decreases in accordance with the fluidity enhancements of the corresponding imidazolium-based IL. Hence, structural findings can explain and justify rationally the origins of the observed trends in the simulated dynamical properties of these ILs in our previous report. A complete understanding of the microscopic structure of ILs is necessary to control the outstanding properties of ILs as designer solvents that will support experimentalists for the best engineering design and a breakthrough efficiency of IL-related processes.
Collapse
Affiliation(s)
- Soraya Ebrahimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | | |
Collapse
|
38
|
Ray P, Elfgen R, Kirchner B. Cation influence on heterocyclic ammonium ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 2019; 21:4472-4486. [DOI: 10.1039/c8cp07683a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four different ionic liquids (ILs) consisting of the bis(trifluoromethanesulfonyl)imide ([NTf2]−) anion, with structurally similar systematically varying cations, are investigated herein through classical molecular dynamics.
Collapse
Affiliation(s)
- Promit Ray
- Mulliken Center for Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-Universität Bonn
- D-53115 Bonn
- Germany
| | - Roman Elfgen
- Mulliken Center for Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-Universität Bonn
- D-53115 Bonn
- Germany
- Max Planck Institute for Chemical Energy Conversion
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-Universität Bonn
- D-53115 Bonn
- Germany
| |
Collapse
|
39
|
Ray P, Balducci A, Kirchner B. Molecular Dynamics Simulations of Lithium-Doped Ionic-Liquid Electrolytes. J Phys Chem B 2018; 122:10535-10547. [DOI: 10.1021/acs.jpcb.8b06022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Promit Ray
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | | | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
40
|
Brehm M, Sebastiani D. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. J Chem Phys 2018; 148:193802. [PMID: 30307180 DOI: 10.1063/1.5010342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
41
|
Perlt E, Ray P, Hansen A, Malberg F, Grimme S, Kirchner B. Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. J Chem Phys 2018; 148:193835. [PMID: 30307237 DOI: 10.1063/1.5013122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Collapse
Affiliation(s)
- Eva Perlt
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Promit Ray
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Friedrich Malberg
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
42
|
Brela MZ, Kubisiak P, Eilmes A. Understanding the Structure of the Hydrogen Bond Network and Its Influence on Vibrational Spectra in a Prototypical Aprotic Ionic Liquid. J Phys Chem B 2018; 122:9527-9537. [PMID: 30239203 DOI: 10.1021/acs.jpcb.8b05839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of the hydrogen bond network in aprotic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) has been performed based on structures obtained from ab initio or classical molecular dynamics simulations. Statistics of different donor and acceptor atoms and the amount of chelating or bifurcated bonds has been presented. Most of the hydrogen bonds in EMIM-TFSI are formed with oxygen atoms as hydrogen acceptors; and the most probable bifurcated bonds are those with a mixed pair of oxygen and nitrogen acceptors. Spectral graph analysis has shown that the cations may form hydrogen bonds with up to five different anions and the connectivity of the whole hydrogen bond network is supported mainly by H-O bonds. In the structures of the liquid simulated via force field-based dynamics, the number of hydrogen bonds is smaller and fluorine atoms are the most favored hydrogen acceptors. One-dimensional potential energy profiles for hydrogen atom displacements and corresponding vibrational frequencies have been calculated for selected C-H bonds. Individual C-H stretching frequencies vary by 200-300 cm-1, indicating differences in local environment of hydrogen atoms forming C-H···O hydrogen bonds.
Collapse
Affiliation(s)
- Mateusz Z Brela
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Piotr Kubisiak
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Andrzej Eilmes
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
43
|
Brinzer T, Daly CA, Allison C, Garrett-Roe S, Corcelli SA. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: III. Dynamics and Spectroscopy. J Phys Chem B 2018; 122:8931-8942. [PMID: 30160958 DOI: 10.1021/acs.jpcb.8b05659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, interest in carbon capture and sequestration has led to numerous investigations of the ability of ionic liquids to act as recyclable CO2-sorbent materials. Herein, we investigate the structure and dynamics of a model physisorbing ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1Im][PF6]), from the perspective of CO2 using two-dimensional (2D) IR spectroscopy and molecular dynamics simulations. A direct comparison of experimentally measured and calculated 2D IR line shapes confirms the validity of the simulations and spectroscopic calculations. Taken together, the simulations and experiments reveal new insights into the interactions of a CO2 solute with the surrounding ionic liquid and how these interactions manifest in the 2D IR spectra. In particular, higher CO2 asymmetric stretch vibrational frequencies are associated with softer, less populated solvent cages and lower frequencies are associated with tighter, more highly populated solvent cages. The CO2 interacts most strongly with the anions, and these interactions persist for more than 1 ns. The second strongest interactions are with the imidazolium cation ring that last 100 ps, and the weakest interactions are with the cation butyl tail that persist for 10 ps. The principal contributors to spectral diffusion of the CO2 asymmetric stretch vibrational frequency due to the dynamical evolution of the solvent are through Lennard-Jones interactions at short times and electrostatics at long times.
Collapse
Affiliation(s)
- Thomas Brinzer
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States.,Pittsburgh Quantum Institute , University of Pittsburgh , 3943 O'Hara Street , Pittsburgh , Pennsylvania 15260 , United States
| | - Clyde A Daly
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| | - Cecelia Allison
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| | - Sean Garrett-Roe
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States.,Pittsburgh Quantum Institute , University of Pittsburgh , 3943 O'Hara Street , Pittsburgh , Pennsylvania 15260 , United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| |
Collapse
|
44
|
Zheng YZ, Chen DF, Zhou Y, Guo R, Liang Q, Fu ZM. Hydrogen-bonding interactions between 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and dimethyl sulphoxide. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Smith CJ, Gehrke S, Hollóczki O, Wagle DV, Heitz MP, Baker GA. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. J Chem Phys 2018; 148:193845. [PMID: 30307178 DOI: 10.1063/1.5016337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chip J. Smith
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Muelheim an der Ruhr 45470, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, Bonn 53115, Germany
| | - Durgesh V. Wagle
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Mark P. Heitz
- Department of Chemistry and Biochemistry, The College at Brockport SUNY, Brockport, New York 14420, USA
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
46
|
Daly CA, Brinzer T, Allison C, Garrett-Roe S, Corcelli SA. Enthalpic Driving Force for the Selective Absorption of CO 2 by an Ionic Liquid. J Phys Chem Lett 2018; 9:1393-1397. [PMID: 29504771 DOI: 10.1021/acs.jpclett.8b00347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular dynamics (MD) simulations validated against two-dimensional infrared (2D-IR) measurements of CO2 in an imidazolium-based ionic liquid have revealed new insights into the mechanism of CO2 solvation. The first solvation shell around CO2 has a distinctly quadrupolar structure, with strong negative charge density around the CO2 carbon atom and positive charge density near the CO2 oxygen atoms. When CO2 is modeled without atomic charges (thus removing its strong quadrupole moment), its solvation shell weakens and changes significantly into a structure that is similar to that of N2 in the same liquid. The solvation shell of CO2 evolves more quickly when its quadrupole is removed, and we find evidence that solvent cage dynamics is measured by 2D-IR spectroscopy. We also find that the solvent cage evolution of N2 is similar to that of CO2 with no atomic charges, implying that the weaker quadrupole of N2 is responsible for its higher diffusion and lower absorption in ionic liquids.
Collapse
Affiliation(s)
- Clyde A Daly
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| | - Thomas Brinzer
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
- Pittsburgh Quantum Institute , University of Pittsburgh , 3943 O'Hara Street , Pittsburgh , Pennsylvania 15260 , United States
| | - Cecelia Allison
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| | - Sean Garrett-Roe
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
- Pittsburgh Quantum Institute , University of Pittsburgh , 3943 O'Hara Street , Pittsburgh , Pennsylvania 15260 , United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Hall , Notre Dame , Indiana 46656 , United States
| |
Collapse
|
47
|
Mahmood S, Xu BH, Ren TL, Zhang ZB, Liu XM, Zhang SJ. Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Gehrke S, von Domaros M, Clark R, Hollóczki O, Brehm M, Welton T, Luzar A, Kirchner B. Structure and lifetimes in ionic liquids and their mixtures. Faraday Discuss 2018; 206:219-245. [DOI: 10.1039/c7fd00166e] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems.
Collapse
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
- Max Planck Institute for Chemical Energy Conversion
| | - Michael von Domaros
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | | | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Martin Brehm
- Theoretical Chemistry
- Martin-Luther-University Halle-Wittenberg
- D-06108 Halle
- Germany
| | | | - Alenka Luzar
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| |
Collapse
|
49
|
Willcox JAL, Kim H, Kim HJ. A molecular dynamics study of the ionic liquid, choline acetate. Phys Chem Chem Phys 2017; 18:14850-8. [PMID: 27188287 DOI: 10.1039/c6cp01031h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and dynamic properties of the ionic liquid (IL) choline acetate are studied using molecular dynamics (MD) simulations. The hydroxyl group of choline shows significant hydrogen-bonding interactions with the oxygen atoms of acetate. Nearly all choline cations are found to form a hydrogen bond with acetate anions at 400 K, while about 67% of cations participate in hydrogen-bonding interactions at 600 K. At 400 K, subdiffusive and prominent non-Gaussian behavior persist for t > 10 ns. At 600 K, the usual diffusion regime is obtained after a few hundred ps of subdiffusive behavior. Analysis of reorientational motions of acetate ions, particularly those of their short axes, indicates a high degree of dynamic heterogeneity, in agreement with previous work on different IL systems.
Collapse
Affiliation(s)
- Jon A L Willcox
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Hyunjin Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Hyung J Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA. and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
50
|
Atomistic insights into the thermodynamics, structure, and dynamics of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate via molecular dynamics study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|