1
|
Reinot T, Khmelnitskiy A, Zazubovich V, Toporik H, Mazor Y, Jankowiak R. Frequency-Domain Spectroscopic Study of the Photosystem I Supercomplexes, Isolated IsiA Monomers, and the Intact IsiA Ring. J Phys Chem B 2022; 126:6891-6910. [PMID: 36065077 DOI: 10.1021/acs.jpcb.2c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PSI3-IsiA18 supercomplex is one of the largest and most complicated assemblies in photosynthesis. The IsiA ring, composed of 18 IsiA monomers (IsiA18) surrounding the PSI trimer (PSI3), forms under iron-deficient conditions in cyanobacteria and acts as a peripheral antenna. Based on the supercomplex structure recently determined via cryo-EM imaging, we model various optical spectra of the IsiA monomers and IsiA18 ring. Comparison of the absorption and emission spectra of the isolated IsiA monomers and the full ring reveals that about 2.7 chlorophylls (Chls) are lost in the isolated IsiA monomers. The best fits for isolated monomers spectra are obtained assuming the absence of Chl 508 and Chl 517 and 70% loss of Chl 511. The best model describing all three hexamers and the entire ring suggests that the lowest energy pigments are Chls 511, 514, and 517. Based on the modeling results presented in this work, we conclude that there are most likely three entry points for EET from the IsiA6 hexamer to the PSI core monomer, with two of these entry points likely being located next to each other (i.e., nine entry points from IsiA18 to the PSI3 trimer). Finally, we show that excitation energy transfer inside individual monomers is fast (<2 ps at T = 5 K) and at least 20 times faster than intermonomer energy transfer.
Collapse
Affiliation(s)
| | | | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
| | - Hila Toporik
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
2
|
Khmelnitskiy A, Toporik H, Mazor Y, Jankowiak R. On the Red Antenna States of Photosystem I Mutants from Cyanobacteria Synechocystis PCC 6803. J Phys Chem B 2020; 124:8504-8515. [DOI: 10.1021/acs.jpcb.0c05201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Khmelnitskiy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hila Toporik
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Zazubovich V, Jankowiak R. How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes? J Phys Chem B 2019; 123:6007-6013. [PMID: 31265294 DOI: 10.1021/acs.jpcb.9b03806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, we combined Monte Carlo and nonphotochemical hole burning (NPHB) master equation approaches to allow for ultrahigh-resolution (<0.005 cm-1, smaller than the typical homogeneous line widths at 5 K) simulations of the NPHB spectra of dimers and trimers of interacting pigments. These simulations reveal significant differences between the zero-phonon hole (ZPH) action spectrum and the site-distribution function (SDF) of the lowest-energy state. The NPHB of the lowest-energy pigment, following the excitation energy transfer (EET) from the higher-energy pigments which are excited directly, results in the shifts of all excited states. These shifts affect the ZPH action spectra and EET times derived from the widths of the spectral holes burned in the donor-dominated regions. The effect is present for a broad variety of realistic antihole functions, and it is maximal at relatively low values of interpigment coupling (V ≤ 5 cm-1) where the use of the Förster approximation is justified. These findings need to be considered in interpreting various optical spectra of photosynthetic pigment-protein complexes for which SDFs (describing the inhomogeneous broadening) are often obtained directly from the ZPH action spectra. Water-soluble chlorophyll-binding protein (WSCP) was considered as an example.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics , Concordia University , 7141 Sherbrooke Street West , Montreal H4B 1R6 , Quebec , Canada
| | - Ryszard Jankowiak
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
4
|
Anda A, Abramavičius D, Hansen T. Two-dimensional electronic spectroscopy of anharmonic molecular potentials. Phys Chem Chem Phys 2018; 20:1642-1652. [PMID: 29261201 DOI: 10.1039/c7cp06583c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful tool in the study of coupled electron-phonon dynamics, yet very little is known about how nonlinearities in the electron-phonon coupling, arising from anharmonicities in the nuclear potentials, affect the spectra. These become especially relevant when the coupling is strong. From the linear spectroscopies, anharmonicities are known to give structure to the zero-phonon line and to break mirror-symmetry between absorption and emission, but the 2D analogues of these effects have not been identified. Using a simple two-level model where the electronic states are described by (displaced) harmonic oscillators with differing curvatures or displaced Morse oscillators, we find that the zero-phonon line shape is essentially transferred to the diagonal in 2DES spectra, and that anharmonicities break a horizontal mirror-symmetry in the infinite waiting time limit. We also identify anharmonic effects that are only present in 2DES spectra: twisting of cross-peaks stemming from stimulated emission signals; and oscillation period mismatch between ground state bleach and stimulated emission (for harmonic oscillators with differing curvatures), or inherently chaotic oscillations (for Morse oscillators). Our findings will facilitate an improved understanding of 2DES spectra and aid the interpretation of signals that are more realistic than those arising from simple models.
Collapse
Affiliation(s)
- André Anda
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
5
|
Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V. Probing Energy Landscapes of Cytochrome b 6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent. J Phys Chem B 2017; 121:9848-9858. [PMID: 28956922 DOI: 10.1021/acs.jpcb.7b07686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In non-photochemical spectral hole burning (NPHB) and spectral hole recovery experiments, cytochrome b6f protein exhibits behavior that is almost independent of the deuteration of the buffer/glycerol glassy matrix containing the protein, apart from some differences in heat dissipation. On the other hand, strong dependence of the hole burning properties on sample preparation procedures was observed and attributed to a large increase of the electron-phonon coupling and shortening of the excited-state lifetime occurring when n-dodecyl β-d-maltoside (DM) is used as a detergent instead of n-octyl β-d-glucopyranoside (OGP). The data was analyzed assuming that the tunneling parameter distribution or barrier distribution probed by NPHB and encoded into the spectral holes contains contributions from two nonidentical components with accidentally degenerate excited state λ-distributions. Both components likely reflect protein dynamics, although with some small probability one of them (with larger md2) may still represent the dynamics involving specifically the -OH groups of the water/glycerol solvent. Single proton tunneling in the water/glycerol solvent environment or in the protein can be safely excluded as the origin of observed NPHB and hole recovery dynamics. The intensity dependence of the hole growth kinetics in deuterated samples likely reflects differences in heat dissipation between protonated and deuterated samples. These differences are most probably due to the higher interface thermal resistivity between (still protonated) protein and deuterated water/glycerol outside environment.
Collapse
Affiliation(s)
- Alexander Levenberg
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Golia Shafiei
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Maria A Lujan
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Steven Giannacopoulos
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Valter Zazubovich
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
6
|
Reinot T, Chen J, Kell A, Jassas M, Robben KC, Zazubovich V, Jankowiak R. On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex. ANALYTICAL CHEMISTRY INSIGHTS 2016; 11:35-48. [PMID: 27279733 PMCID: PMC4892206 DOI: 10.4137/aci.s32151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/10/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
We focus on problems with elucidation of site energies
(E0n) for photosynthetic complexes (PSCs) in order to raise some genuine concern regarding the conflicting estimations propagating in the literature. As an example, we provide a stern assessment of the site energies extracted from fits to optical spectra of the widely studied CP47 antenna complex of photosystem II from spinach, though many general comments apply to other PSCs as well. Correct values of
E0n for chlorophyll (Chl) a in CP47 are essential for understanding its excitonic structure, population dynamics, and excitation energy pathway(s). To demonstrate this, we present a case study where simultaneous fits of multiple spectra (absorption, emission, circular dichroism, and nonresonant hole-burned spectra) show that several sets of parameters can fit the spectra very well. Importantly, we show that variable emission maxima (690–695 nm) and sample-dependent bleaching in nonresonant hole-burning spectra reported in literature could be explained, assuming that many previously studied CP47 samples were a mixture of intact and destabilized proteins. It appears that the destabilized subpopulation of CP47 complexes could feature a weakened hydrogen bond between the 131-keto group of Chl29 and the PsbH protein subunit, though other possibilities cannot be entirely excluded, as discussed in this work. Possible implications of our findings are briefly discussed.
Collapse
Affiliation(s)
- Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Jinhai Chen
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Adam Kell
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Mahboobe Jassas
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Kevin C Robben
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS, USA.; Department of Physics, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Najafi M, Zazubovich V. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis. J Phys Chem B 2015; 119:7911-21. [PMID: 26020801 DOI: 10.1021/acs.jpcb.5b02764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We are reporting development and initial applications of the light-induced and thermally induced spectral diffusion modeling software, covering nonphotochemical spectral hole burning (NPHB), hole recovery, and single-molecule spectroscopy and involving random generation of the multiwell protein energy landscapes. The model includes tunneling and activated barrier-hopping in both ground and excited states of a protein-chromophore system. Evolution of such a system is predicted by solving the system of rate equations. Using the barrier parameters from the range typical for the energy landscapes of the pigment-protein complexes involved in photosynthesis, we (a) show that realistic cooling of the sample must result in proteins quite far from thermodynamic equilibrium, (b) demonstrate hole evolution in the cases of burning, fixed-temperature recovery and thermocycling that mostly agrees with the experiment and modeling based on the NPHB master equation, and (c) explore the effects of different protein energy landscapes on the antihole shape. Introducing the multiwell energy landscapes and starting the hole burning experiments in realistic nonequilibrium conditions are not sufficient to explain all experimental observations even qualitatively. Therefore, for instance, one is required to invoke the modified NPHB mechanism where a complex interplay of several small conformational changes is poising the energy landscape of the pigment-protein system for downhill tunneling.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Physics, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B 1R6, Quebec, Canada
| |
Collapse
|
8
|
|
9
|
Zazubovich V. Fluorescence Line Narrowing and Δ-FLN Spectra in the Presence of Excitation Energy Transfer between Weakly Coupled Chromophores. J Phys Chem B 2014; 118:13535-43. [DOI: 10.1021/jp509056z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal H4B 1R6, Quebec, Canada
| |
Collapse
|
10
|
Herascu N, Kell A, Acharya K, Jankowiak R, Blankenship RE, Zazubovich V. Modeling of Various Optical Spectra in the Presence of Slow Excitation Energy Transfer in Dimers and Trimers with Weak Interpigment Coupling: FMO as an Example. J Phys Chem B 2014; 118:2032-40. [DOI: 10.1021/jp410586f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | | | | | | | | | - Valter Zazubovich
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| |
Collapse
|
11
|
Jankowiak R. Probing Electron-Transfer Times in Photosynthetic Reaction Centers by Hole-Burning Spectroscopy. J Phys Chem Lett 2012; 3:1684-1694. [PMID: 26285729 DOI: 10.1021/jz300505r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A brief discussion is presented of transient hole-burned (HB) spectra (and the information that they provide) obtained for isolated reaction centers (RCs) from wild-type (WT) Rhodobacter sphaeroides, RCs containing zinc-bacteriochlorophylls (Zn-BChls), and RCs of Photosystem II (PSII) from spinach and Chlamydomonas reinhardtii . The shape of the spectral density and the strength of electron-phonon coupling in bacterial RCs are discussed. We focus, however, on heterogeneity of isolated PS II RCs from spinach and, in particular, Chlamydomonas reinhardtii , site energies of active (electron acceptor) and inactive pheophytins, the nature of the primary electron donor(s), and the possibility of multiple charge-separation (CS) pathways in the isolated PSII RC. We conclude with comments on current efforts in HB spectroscopy in the area of photosynthesis and future directions in HB spectroscopy.
Collapse
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry and Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
12
|
Wagie HE, Geissinger P. Hole-burning spectroscopy as a probe of nano-environments and processes in biomolecules: a review. APPLIED SPECTROSCOPY 2012; 66:609-627. [PMID: 22732531 DOI: 10.1366/12-06655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hole-burning spectroscopy, a high-resolution spectroscopic technique, allows details of heterogeneous nano-environments in biological systems to be obtained from broad absorption bands. Recently, this technique has been applied to proteins, nucleic acids, cells, and substructures of water to probe the electrostatic conditions created by macromolecules and the surrounding solvent. Starting with the factors that obscure the homogeneous linewidth of a chromophore within an inhomogeneously broadened absorption or emission band, we describe properties and processes in biological systems that are reflected in the measured hole spectra. The technique also lends itself to the resolution of perturbation experiments, such as temperature cycling to elucidate energy landscape barriers, applied external electric fields (Stark effect) to measure net internal electric fields, and applied hydrostatic pressure to find the volume compressibility of proteins.
Collapse
|
13
|
Acharya K, Zazubovich V, Reppert M, Jankowiak R. Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:4860-70. [PMID: 22462595 DOI: 10.1021/jp302849d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated reaction centers (RCs) from wild-type Chlamydomonas (C.) reinhardtii of Photosystem II (PSII), at different levels of intactness, were studied to provide more insight into the nature of the charge-separation (CS) pathway(s). We argue that previously studied D1/D2/Cytb559 complexes (referred to as RC680), with ChlD1 serving as the primary electron donor, contain destabilized D1 and D2 polypeptides and, as a result, do not provide a representative model system for the intact RC within the PSII core. The shapes of nonresonant transient hole-burned (HB) spectra obtained for more intact RCs (referred to as RC684) are very similar to P(+)QA(-) - PQA absorbance difference and triplet minus singlet spectra measured in PSII core complexes from Synechocystis PCC 6803 [Schlodder et al. Philos. Trans. R. Soc. London, Ser. B2008, 363, 1197]. We show that in the RC684 complexes, both PD1 and ChlD1 may serve as primary electron donors, leading to two different charge separation pathways. Resonant HB spectra cannot distinguish the CS times corresponding to different paths, but it is likely that the zero-phonon holes (ZPHs) observed in the 680-685 nm region (corresponding to CS times of ∼1.4-4.4 ps) reveal the ChlD1 pathway; conversely, the observation of charge-transfer (CT) state(s) in RC684 (in the 686-695 nm range) and the absence of ZPHs at λB > 685 nm likely stem from the PD1 pathway, for which CS could be faster than 1 ps. This is consistent with the finding of Krausz et al. [Photochem. Photobiol. Sci.2005, 4, 744] that CS in intact PSII core complexes can be initiated at low temperatures with fairly long-wavelength excitation. The lack of a clear shift of HB spectra as a function of excitation wavelength within the red-tail of the absorption (i.e., 686-695 nm) and the absence of ZPHs suggest that the lowest-energy CT state is largely homogeneously broadened. On the other hand, in usually studied destabilized RCs, that is, RC680, for which CT states have never been experimentally observed, ChlD1 is the most likely electron donor.
Collapse
Affiliation(s)
- Khem Acharya
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | | | | | | |
Collapse
|
14
|
Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R. Site energies of active and inactive pheophytins in the reaction center of Photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:3890-9. [PMID: 22397491 DOI: 10.1021/jp3007624] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin a (Pheo a) within the D1 protein (Pheo(D1)), while Pheo(D2) (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q(y)-states of Pheo(D1) and Pheo(D2) bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986 - 998; Cox et al. J. Phys. Chem. B 2009, 113, 12364 - 12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo(D1) is near 672 nm, whereas Pheo(D2) (~677.5 nm) and Chl(D1) (~680 nm) have the lowest energies (i.e., the Pheo(D2)-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q(y) absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472 - 11482; Germano et al. Biophys. J. 2004, 86, 1664 - 1672]. To provide more insight into the site energies of both Pheo(D1) and Pheo(D2) (including the corresponding Q(x) transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo(D1) is genetically replaced with chlorophyll a (Chl a). We show that the Q(x)-/Q(y)-region site energies of Pheo(D1) and Pheo(D2) are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803 - 8814]. The latter values should be used to model excitonic structure and excitation energy transfer dynamics of the PSII RCs.
Collapse
Affiliation(s)
- K Acharya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | | | | | | | | | | |
Collapse
|