1
|
Maret PD, Sasikumar D, Sebastian E, Hariharan M. Symmetry-Breaking Charge Separation in a Chiral Bis(perylenediimide) Probed at Ensemble and Single-Molecule Levels. J Phys Chem Lett 2023; 14:8667-8675. [PMID: 37733055 DOI: 10.1021/acs.jpclett.3c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral molecular assemblies exhibiting symmetry-breaking charge separation (SB-CS) are potential candidates for the development of chiral organic semiconductors. Herein, we explore the excited-state dynamics of a helically chiral perylenediimide bichromophore (Cy-PDI2) exhibiting SB-CS at the ensemble and single-molecule levels. Solvent polarity-tunable interchromophoric excitonic coupling in chiral Cy-PDI2 facilitates the interplay of SB-CS and excimer formation in the ensemble domain. Analogous to the excited-state dynamics of Cy-PDI2 at the ensemble level, single-molecule fluorescence lifetime traces of Cy-PDI2 depicted long-lived off-states characteristic of the radical ion pair-mediated dark states. The discrete electron transfer and charge separation dynamics in Cy-PDI2 at the single-molecule level are governed by the distinct influence of the local environment. The present study aims at understanding the fundamental excited-state dynamics in chiral organic bichromophores for designing efficient chiral organic semiconductors and applications toward charge transport materials.
Collapse
Affiliation(s)
- Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021; 60:19018-19023. [PMID: 34105225 DOI: 10.1002/anie.202105044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Indexed: 11/06/2022]
Abstract
A novel kind of monocyclic and dicyclic dehydro[20]annulenes exhibiting specific sizes and topologies from regioselective unilateral ortho-diethynyl PDI, is developed by Cu-catalyzed Glaser-Hay homo-coupling and cross-coupling. Through the integration of electron-deficient PDI chromophores into the dehydroannulene scaffolding, these macrocycles exhibit intense and characteristic absorption properties and the degenerated LUMO levels. The single-crystal X-ray diffraction analysis unambiguously revealed unique porous supramolecular structures, which display micropore characteristics with surface area of 120.74 m2 g-1 . A moderate electron mobility of 0.05 cm2 V-1 s-1 for chlorine-free dehydro[20]annulene based on micrometer-sized single-crystalline transistors was witnessed. The porous and yet semiconducting features signify the prospects of PDI-integrated dehydroannulenes in organic optoelectronics.
Collapse
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
4
|
Lee SH, Yang J, Kim D. Structure-Dependent Electronic Interactions in Ethyne-Bridged Porphyrin Arrays Investigated by Single-Molecule Fluorescence Spectroscopy. J Phys Chem Lett 2016; 7:3676-3682. [PMID: 27575018 DOI: 10.1021/acs.jpclett.6b01531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By using single-molecule fluorescence spectroscopy, we have investigated the electronic interaction of ethyne-bridged porphyrin arrays (ZNE) depending on their structure. The fluorescence dynamics of ZNE show a large amount of one-step photobleaching behaviors, indicating the high degree of π-conjugation. The ratio of one-step photobleaching behavior decreased as the number of porphyrin units increased. This behavior indicates that the linear and shortest Z2E shows a strong electronic coupling between constituent porphyrin moieties. Structural properties and orientation of ZNE were also measured by wide-field excitation fluorescence spectroscopy (ExPFS) and defocused wide-field imaging (DWFI). The ExPFS and DWFI show that the structure of absorbing and emitting units of Z2E and Z3E are linear. On the other hand, star-shaped pentamer with five porphyrins acts as an absorbing unit, but unidirectional trimer moiety acts as an emitting unit in the Z5E molecule. Collectively, these studies provide further information on the electronic interaction depending on their structure and length.
Collapse
Affiliation(s)
- Sang Hyeon Lee
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Jaesung Yang
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
5
|
Li Y, He G, Wang X, Guo Q, Niu Y, Xia A. A Study of Excitation Delocalization/Localization in Multibranched Chromophores by Using Fluorescence Excitation Anisotropy Spectroscopy. Chemphyschem 2015; 17:406-11. [DOI: 10.1002/cphc.201501001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Li
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| | - Guiying He
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| | - Xian Wang
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences Department; Bejing 100190 China
| |
Collapse
|
6
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 977] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Son M, Fimmel B, Dehm V, Würthner F, Kim D. Folding-Induced Modulation of Excited-State Dynamics in an Oligophenylene-Ethynylene-Tethered Spiral Perylene Bisimide Aggregate. Chemphyschem 2015; 16:1757-67. [DOI: 10.1002/cphc.201500156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/11/2022]
|
8
|
Synthesis, characterization, optical and electrochemical properties of a new chiral multichromophoric system based on perylene and naphthalene diimides. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Long S, Zhou M, Tang K, Zeng XL, Niu Y, Guo Q, Zhao KH, Xia A. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1–240) dimers. Phys Chem Chem Phys 2015; 17:13387-96. [DOI: 10.1039/c5cp01687h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The red-shifted absorption of ApcE dimers results from extending chromophore conformation, which does not depend on strong exction coupling.
Collapse
Affiliation(s)
- Saran Long
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kun Tang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| |
Collapse
|
10
|
Cho JW, Yoo H, Lee JE, Yan Q, Zhao D, Kim D. Intramolecular Interactions of Highly π-Conjugated Perylenediimide Oligomers Probed by Single-Molecule Spectroscopy. J Phys Chem Lett 2014; 5:3895-3901. [PMID: 26278766 DOI: 10.1021/jz501765x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Highly π-conjugated perylenediimide (PDI) oligomers are promising low band gap organic materials for various applications in optoelectronics. In this work, individual fluorescence dynamics of ethynylene- and butadiynylene-bridged dimeric and trimeric PDIs (PEP, PBP, and PEPEP) were monitored and analyzed by single-molecule fluorescence spectroscopy to gain information on the degree of extension of π-conjugation through the acetylene bridge in PDI multichromophores. The simultaneous measurements of fluorescence intensity, lifetime, and spectrum indicate a sequential decrease in π-conjugation upon photobleaching of PDI monomer units. Furthermore, Huang-Rhys (HR) factors, S, are obtained to evaluate the degree of electronic coupling in view of π-conjugation and overall rigidity between the PDI units in PDI oligomers at the single-molecule level. In addition, butadiynylene-bridged dimeric PDI (PBP) reveals conformational heterogeneity due to the long butadiynylene linker. These results suggest a new way to control the photophysical properties of the PDI multichromophoric system by expansion of π-conjugation and modification with different linker groups.
Collapse
Affiliation(s)
- Jae-Won Cho
- †Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Hyejin Yoo
- †Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ji-Eun Lee
- †Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Qifan Yan
- ‡Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- ‡Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dongho Kim
- †Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
11
|
Spreitler F, Sommer M, Hollfelder M, Thelakkat M, Gekle S, Köhler J. Unravelling the conformations of di-(perylene bisimide acrylate) by combining time-resolved fluorescence-anisotropy experiments and molecular modelling. Phys Chem Chem Phys 2014; 16:25959-68. [DOI: 10.1039/c4cp03064h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Mishra R, Panini P, Sankar J. Novel Azepino-perylenebisimides: Synthesis, Structure, and Properties. Org Lett 2014; 16:3994-7. [DOI: 10.1021/ol501822c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruchika Mishra
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 066, India
| | - Piyush Panini
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 066, India
| | - Jeyaraman Sankar
- Department
of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 066, India
| |
Collapse
|
13
|
Mishra R, Lim JM, Son M, Panini P, Kim D, Sankar J. Tuning the Electronic Nature of Mono-Bay Alkynyl-Phenyl-Substituted Perylene Bisimides: Synthesis, Structure, and Photophysical Properties. Chemistry 2014; 20:5776-86. [DOI: 10.1002/chem.201400099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Indexed: 01/02/2023]
|
14
|
Issac A, Hildner R, Hippius C, Würthner F, Köhler J. Stepwise decrease of fluorescence versus sequential photobleaching in a single multichromophoric system. ACS NANO 2014; 8:1708-1717. [PMID: 24444041 DOI: 10.1021/nn4060946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For individual molecules from the newly synthesized calix[4]arene tethered perylene bisimide (PBI) trimer, we studied the emitted fluorescence intensity as a function of time. Owing to the zigzag arrangement of PBI dyes in these trimers, the polarization state of the emission provides directly information about the emitting subunit within the trimer. Interestingly, we observed emission from all neutral subunits within a trimer rather than exclusively from the subunit with the lowest site energy. This can be understood in terms of thermally activated uphill energy transfer that repopulates the higher energetic chromophores. Together with the simultaneously recorded polarization-resolved emission spectra, this reveals that the emission from a multichromophoric system is governed by a complex interplay between the temporal variations of the photophysical parameters of the subunits, bidirectional hopping processes within the trimer, and unavoidable photobleaching. Moreover, it is demonstrated that the typically observed stepwise decrease of the signal from a multichromophoric system does not necessarily reflect sequential bleaching of the individual chromophores within the macromolecule.
Collapse
Affiliation(s)
- Abey Issac
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
15
|
Collini E, Bolzonello L, Zerbetto M, Ferrante C, Manfredi N, Abbotto A. Lifetime shortening and fast energy-tansfer processes upon dimerization of a A-π-D-π-A molecule. Chemphyschem 2014; 15:310-9. [PMID: 24265124 DOI: 10.1002/cphc.201300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/21/2013] [Indexed: 11/10/2022]
Abstract
Time-resolved fluorescence and transient absorption experiments uncover a distinct change in the relaxation dynamics of the homo-dimer formed by two 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]-N-methylpyrrole ditriflate (M) units linked by a short alkyl chain when compared to that of the monomer M. Fluorescence decay traces reveal characteristic decay times of 1.1 ns and 210 ps for M and the dimer, respectively. Transient absorption spectra in the spectral range of 425-1050 nm display similar spectral features for both systems, but strongly differ in the characteristic relaxation times gathered from a global fit of the experimental data. To rationalize the data we propose that after excitation of the dimer the energy localizes on one M branch and then decays to a dark state, peculiar only of the dimer. This dark state relaxes to the ground state within 210 ps through non-radiative relaxation. The nature of the dark state is discussed in relation to different possible photophysical processes such as excimer formation and charge transfer between the two M units. Anisotropy decay traces of the probe-beam differential transmittance of M and the dimer fall on complete different time scales as well. The anisotropy decay for M is satisfactorily ascribed to rotational diffusion in DMSO, whereas for the dimer it occurs on a faster time scale and is likely caused by energy-transfer processes between the two monomer M units.
Collapse
Affiliation(s)
- Elisabetta Collini
- Dipartimento di Scienze Chimiche and UdR INSTM, Università di Padova, Via Marzolo 1, 35131 Padova (Italy)
| | | | | | | | | | | |
Collapse
|
16
|
Kim HN, Puhl L, Nolde F, Li C, Chen L, Basché T, Müllen K. Energy transfer at the single-molecule level: synthesis of a donor-acceptor dyad from perylene and terrylene diimides. Chemistry 2013; 19:9160-6. [PMID: 23780819 DOI: 10.1002/chem.201300439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/08/2022]
Abstract
In 2004, we reported single-pair fluorescence resonance energy transfer (spFRET), based on a perylene diimide (PDI) and terrylene diimide (TDI) dyad (1) that was bridged by a rigid substituted para-terphenyl spacer. Since then, several further single-molecule-level investigations on this specific compound have been performed. Herein, we focus on the synthesis of this dyad and the different approaches that can be employed. An optimized reaction pathway was chosen, considering the solubilities, reactivities, and accessibilities of the building blocks for each individual reaction whilst still using established synthetic techniques, including imidization, Suzuki coupling, and cyclization reactions. The key differentiating consideration in this approach to the synthesis of dyad 1 is the introduction of functional groups in a nonsymmetrical manner onto either the perylene diimide or the terrylene diimide by using imidization reactions. Combined with well-defined purification conditions, this modified approach allows dyad 1 to be obtained in reasonable quantities in good yield.
Collapse
Affiliation(s)
- Ha Na Kim
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhong L, Xing F, Shi W, Yan L, Xie L, Zhu S. Synthesis, spectra, and electron-transfer reaction of aspartic acid-functionalized water-soluble perylene bisimide in aqueous solution. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3401-3407. [PMID: 23506346 DOI: 10.1021/am4004446] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An aspartic acid-functionalized water-soluble perylene bisimide, N,N'-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic bisimide (PASP) was synthesized and characterized. It has absorbance maximum A(0-0) and A(0-1) at 527 and 498 nm (ε ≈ 1.7 × 10(4) L cm(-1) mol(-1)) respectively in pH 7.20 HEPES buffer. Two quasi-reversible redox processes with E1/2 at -0.17 and -0.71 V (vs Ag/AgCl) respectively in pH 7-12.5 aqueous solutions. PASP can react with Na2S in pure aqueous solution to form monoanion radical and dianion species consecutively. PASP(-•) has EPR signal with g = 1.998 in aqueous solution, whereas PASP(2-) is EPR silent. The monoanion radical formation is a first-order reaction with k = 8.9 × 10(-2) s(-1). Dianion species formation is a zero-order reaction and the rate constant is 4.3 × 10(-8) mol L(-1) s(-1). The presence of H2O2 greatly increases the radical formation rate constant. PASP as a two-electron transfer reagent is expected to be used in the water photolysis.
Collapse
Affiliation(s)
- Lina Zhong
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | |
Collapse
|
18
|
Ishida Y, Kulasekharan R, Shimada T, Takagi S, Ramamurthy V. Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1748-1753. [PMID: 23360204 DOI: 10.1021/la305148j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A supramolecular host-guest assembly composed of a cationic organic cavitand (host), neutral aromatic molecules (guests), and an anionic clay nanosheet has been prepared and demonstrated that in this arrangement efficient singlet-singlet energy transfer could take place. The novelty of this system is the use of a cationic organic cavitand that enabled neutral organic molecules to be placed on an anionic saponite nanosheet. Efficient singlet-singlet energy transfer between neutral pyrene and 2-acetylanthracene enclosed within a cationic organic cavitand (octa amine) arranged on a saponite nanosheet was demonstrated through steady-state and time-resolved emission studies. The high efficiency was realized from the suppression of aggregation, segregation, and self-fluorescence quenching. We believe that the studies presented here using a novel supramolecular assembly have expanded the types of molecules that could serve as candidates for efficient energy-transfer systems, such as in an artificial light-harvesting system.
Collapse
Affiliation(s)
- Yohei Ishida
- Department of Applied Chemistry, Graduate Course of Urban Environmental Sciences, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
19
|
|