1
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
2
|
Nguan H, Ishak KA, Zahid NI, Martinez-Felipe A, Hashim R, Aripin NFK. Incommensurate lamellar phase from long chain Mannosides: Investigation by X-Ray scattering and replica exchange molecular dynamics (REMD). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Yee SM, Gillams RJ, McLain SE, Lorenz CD. Effects of lipid heterogeneity on model human brain lipid membranes. SOFT MATTER 2021; 17:126-135. [PMID: 33155582 DOI: 10.1039/d0sm01766c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell membranes naturally contain a heterogeneous lipid distribution. However, homogeneous bilayers are commonly preferred and utilised in computer simulations due to their relative simplicity, and the availability of lipid force field parameters. Recently, experimental lipidomics data for the human brain cell membranes under healthy and Alzheimer's disease (AD) conditions were investigated, since disruption to the lipid composition has been implicated in neurodegenerative disorders, including AD [R. B. Chan et al., J. Biol. Chem., 2012, 287, 2678-2688]. In order to observe the effects of lipid complexity on the various bilayer properties, molecular dynamics simulations were used to study four membranes with increasing heterogeneity: a pure POPC membrane, a POPC and cholesterol membrane in a 1 : 1 ratio (POPC-CHOL), and to our knowledge, the first realistic models of a healthy brain membrane and an Alzheimer's diseased brain membrane. Numerous structural, interfacial, and dynamical properties, including the area per lipid, interdigitation, dipole potential, and lateral diffusion of the two simple models, POPC and POPC-CHOL, were analysed and compared to those of the complex brain models consisting of 27 lipid components. As the membranes gain heterogeneity, a number of alterations were found in the structural and dynamical properties, and more significant differences were observed in the lateral diffusion. Additionally, we observed snorkeling behaviour of the lipid tails that may play a role in the permeation of small molecules across biological membranes. In this work, atomistic description of realistic brain membrane models is provided, which can add insight towards the permeability and transport pathways of small molecules across these membrane barriers.
Collapse
Affiliation(s)
- Sze May Yee
- Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Richard J Gillams
- School of Electronics and Computer Science, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sylvia E McLain
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | | |
Collapse
|
4
|
Shen H, Zhao K, Wu Z. Effects of Ether Linkage on Membrane Dipole Potential and Cholesterol Flip-Flop Motion in Lipid Bilayer Membranes. J Phys Chem B 2019; 123:7818-7828. [DOI: 10.1021/acs.jpcb.9b06570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou 550018, P. R. China
- Guizhou University of Finance and Economics, School of Information, University City of Huaxi District, Guiyang, Guizhou 550025, P. R. China
| | - Kun Zhao
- Guizhou University of Finance and Economics, School of Information, University City of Huaxi District, Guiyang, Guizhou 550025, P. R. China
| | - Zhenhua Wu
- Guizhou University of Finance and Economics, School of Information, University City of Huaxi District, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
5
|
Shen H, Wu Z, Zhao K, Yang H, Deng M, Wen S. Effect of Cholesterol and 6-Ketocholestanol on Membrane Dipole Potential and Sterol Flip-Flop Motion in Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11232-11241. [PMID: 31373497 DOI: 10.1021/acs.langmuir.9b01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of experimental and theoretical approaches have been employed to investigate the sterol flip-flop motion in lipid bilayer membranes. However, the sterol effect on the dipole potential of lipid bilayer membranes is less well studied and the influence of dipole potential on sterol flip-flop motion in lipid bilayer membranes is less well understood. In our previous works, we have demonstrated the performance of our coarse-grained (CG) model in the computation of the dipole potential. In this work, five 30 μs CG simulations of dimyristoylphosphatidylcholine (DMPC) bilayers were carried out at different sterol concentrations (in a range from 10 to 50% mole fraction). Then, a comparison was made between the effects of cholesterol (CHOL) and 6-ketocholestanol (6-KC) on the dipole potential of DMPC lipid bilayers as well as the sterol flip-flop motion. Our CG simulations show that the membrane dipole potential is impacted more significantly by 6-KC than by CHOL. This finding is consistent with recent experimental studies. Meanwhile, our work suggests that the sterol-sterol interactions (in particular, electrostatic interactions) should be critical to the formation of sterol-sterol clusters, which would hinder the sterol flip-flop motion inside the lipid bilayers. This is in support of the recent experimental study on the sterol transportation in lipid bilayer membranes.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Zhenhua Wu
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Kun Zhao
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Shuiguo Wen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
| |
Collapse
|
6
|
Oroskar PA, Jameson CJ, Murad S. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane. Methods Mol Biol 2019; 2000:303-359. [PMID: 31148024 DOI: 10.1007/978-1-4939-9516-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use coarse-grained molecular dynamics simulations to "observe" details of interactions between ligand-covered gold nanoparticles and a lipid bilayer model membrane. In molecular dynamics simulations, one puts the individual atoms and groups of atoms of the physical system to be "observed" into a simulation box, specifies the forms of the potential energies of interactions between them (ultimately quantum based), and lets them individually move classically according to Newton's equations of motion, based on the forces arising from the assumed potential energy forms. The atoms that are chemically bonded to each other stay chemically bonded, following known potentials (force fields) that permit internal degrees of freedom (internal rotation, torsion, vibrations), and the interactions between nonbonded atoms are simplified to Lennard-Jones forms (in our case) and coulombic (where electrical charges are present) in which the parameters are previously optimized to reproduce thermodynamic properties or are based on quantum electronic calculations. The system is started out at a reasonable set of coordinates for all atoms or groups of atoms, and then permitted to develop according to the equations of motion, one small step (usually 10 fs time step) at a time, for millions of steps until the system is at a quasi-equilibrium (usually reached after hundreds of nanoseconds). We then let the system play out its motions further for many nanoseconds to observe the behavior, periodically taking snapshots (saving all positions and energies), and post-processing the snapshots to obtain various average descriptions of the system. Alkanethiols of various lengths serve as examples of hydrophobic ligands and methyl-terminated PEG with various numbers of monomer units serve as examples of hydrophilic ligands. Spherical gold particles of various diameters as well as gold nanorods form the core to which ligands are attached. The nanoparticles are characterized at the molecular level, especially the distributions of ligand configurations and their dependence on ligand length, and surface coverage. Self-assembly of the bilayer from an isotropic solution and observation of membrane properties that correspond well to experimental values validate the simulations. The mechanism of permeation of a gold NP coated with either a hydrophobic or a hydrophilic ligand, and its dependence on surface coverage, ligand length, core diameter, and core shape, is investigated. Lipid response such as lipid flip-flops, lipid extraction, and changes in order parameter of the lipid tails are examined in detail. The mechanism of permeation of a PEGylated nanorod is shown to occur by tilting, lying down, rotating, and straightening up. The nature of the information provided by molecular dynamics simulations permits understanding of the detailed behavior of gold nanoparticles interacting with lipid membranes which in turn helps to understand why some known systems work better than others and aids the design of new particles and improvement of methods for preparing existing ones.
Collapse
Affiliation(s)
- Priyanka A Oroskar
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Cynthia J Jameson
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sohail Murad
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
7
|
Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J Chem Theory Comput 2018; 15:775-786. [PMID: 30525595 DOI: 10.1021/acs.jctc.8b01066] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.
Collapse
Affiliation(s)
- Jumin Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Sang-Jun Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Joonseong Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Xi Cheng
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine , Queen's University Belfast BT9 7BL , United Kingdom
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel , Airway Research Center North, Member of the German Center for Lung Research (DZL) , D-23845 Borstel , Germany
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 Moscow , Russia
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Sunhwan Jo
- Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
8
|
Navarro-Retamal C, Bremer A, Ingólfsson HI, Alzate-Morales J, Caballero J, Thalhammer A, González W, Hincha DK. Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A. Biophys J 2018; 115:968-980. [PMID: 30195939 DOI: 10.1016/j.bpj.2018.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023] Open
Abstract
Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic α-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.
Collapse
Affiliation(s)
- Carlos Navarro-Retamal
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anne Bremer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, The Netherlands
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anja Thalhammer
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Casilla, Talca, Chile
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
9
|
Baczynski K, Markiewicz M, Pasenkiewicz‐Gierula M. Is the tilt of the lipid head group correlated with the number of intermolecular interactions at the bilayer interface? FEBS Lett 2018; 592:1507-1515. [DOI: 10.1002/1873-3468.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Krzysztof Baczynski
- Department of Computational Biophysics and Bioinformatics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Marta Pasenkiewicz‐Gierula
- Department of Computational Biophysics and Bioinformatics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
10
|
Sridhar A, Kumar A, Dasmahapatra AK. Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. J Mol Graph Model 2016; 68:236-251. [PMID: 27474868 DOI: 10.1016/j.jmgm.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The AB5 type toxin produced by the Vibrio cholerae bacterium is the causative agent of the cholera disease. The cholera toxin (CT) has been shown to bind specifically to GM1 glycolipids on the membrane surface. This binding of CT to the membrane is the initial step in its endocytosis and has been postulated to cause significant disruption to the membrane structure. In this work, we have carried out a combination of coarse-grain and atomistic simulations to study the binding of CT to a membrane modelled as an asymmetrical GM1-DPPC bilayer. Simulation results indicate that the toxin binds to the membrane through only three of its five B subunits, in effect resulting in a tilted bound configuration. Additionally, the binding of the CT can increase the area per lipid of GM1 leaflet, which in turn can cause the membrane regions interacting with the bound subunits to experience significant bilayer thinning and lipid tail disorder across both the leaflets.
Collapse
Affiliation(s)
- Akshay Sridhar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
11
|
Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2512-2528. [PMID: 26809025 DOI: 10.1016/j.bbamem.2016.01.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
12
|
Botan A, Favela-Rosales F, Fuchs PFJ, Javanainen M, Kanduč M, Kulig W, Lamberg A, Loison C, Lyubartsev A, Miettinen MS, Monticelli L, Määttä J, Ollila OHS, Retegan M, Róg T, Santuz H, Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J Phys Chem B 2015; 119:15075-88. [PMID: 26509669 PMCID: PMC4677354 DOI: 10.1021/acs.jpcb.5b04878] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
Collapse
Affiliation(s)
- Alexandru Botan
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Fernando Favela-Rosales
- Departamento
de Física, Centro de Investigación
y de Estudios Avanzados del IPN, Apartado, Postal 14-740, Mexico City, 07000 México
D.F., México
| | - Patrick F. J. Fuchs
- Institut
Jacques Monod, UMR 7592 CNRS, Université Paris
Diderot, Sorbonne, Paris Cité, F-75205 Paris, France
| | - Matti Javanainen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Matej Kanduč
- Fachbereich
Physik, Freie Universität Berlin, Berlin, 14195 Germany
| | - Waldemar Kulig
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Antti Lamberg
- Department
of Chemical Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Claire Loison
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Alexander Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | - Luca Monticelli
- Institut
de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon 69 367, France
| | - Jukka Määttä
- Department of Chemistry, Aalto University, 00076 Aalto, Finland
| | - O. H. Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Marius Retegan
- Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Hubert Santuz
- INSERM, UMR_S 1134, DSIMB, Paris 75739, France
- Université
Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France
- Institut
National de la Transfusion Sanguine (INTS), Paris 75739, France
- Laboratoire d’Excellence GR-Ex, Paris 75015, France
| | - Joona Tynkkynen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| |
Collapse
|
13
|
Feng T, Li M, Zhou J, Zhuang H, Chen F, Ye R, Campanella O, Fang Z. Application of molecular dynamics simulation in food carbohydrate research—a review. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Baczynski K, Markiewicz M, Pasenkiewicz-Gierula M. A computer model of a polyunsaturated monogalactolipid bilayer. Biochimie 2015; 118:129-40. [PMID: 26348551 DOI: 10.1016/j.biochi.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
1,2-di-O-acyl-3-O-β-D-galactopyranosyl-sn-glycerol (MGDG) is the main lipid component of thylakoid membranes of higher plants and algae. This monogalactolipid is thought of as a non-bilayer lipid but actually it can form both lamellar and nonlamellar phases. In this study, molecular dynamics (MD) simulations of the fully hydrated di-18:3 MGDG bilayer in the lamellar phase were carried out at 310 and 295 K for 200 and 450 ns, respectively, using the GROMACS 4 software package and OPLS-AA force field. At both temperatures, the lamellar phase of the systems was stable. The pure di-18:3 MGDG bilayer is the first step towards creating a computer model of the lipid matrix of the thylakoid membrane and the main aim of this study was to validate the computer model of di-18:3 MGDG in the bilayer and also to assess the properties of the bilayer. However, only a few of the predicted properties could be compared with those derived experimentally and in other MD simulations because of insufficient amount of such data. Thus, direct validation of the MGDG bilayer proved difficult. Therefore, in the validation process also an indirect approach was used, in which a computer model of the 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) bilayer simulated at the same temperatures using the same force field as the MGDG bilayer was assessed. Successful validation of the DOPC bilayer parameterized in the OPLS-AA force field and similar properties of the MGDG molecules in the pure 18:3 MGDG and in binary 18:3 MGDG-PC bilayers indicate that the computer model of the MDGD molecule is faithful and the MGDG bilayer is representative on the time scales covered in these MD simulations.
Collapse
Affiliation(s)
- Krzysztof Baczynski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Hennig R, Heidrich J, Saur M, Schmüser L, Roeters SJ, Hellmann N, Woutersen S, Bonn M, Weidner T, Markl J, Schneider D. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat Commun 2015; 6:7018. [DOI: 10.1038/ncomms8018] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023] Open
|
16
|
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1319-30. [PMID: 25749153 DOI: 10.1016/j.bbamem.2015.02.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Djurre H de Jong
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Migas UM, Abbey L, Velasco-Torrijos T, McManus JJ. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane. SOFT MATTER 2014; 10:3978-3983. [PMID: 24733306 DOI: 10.1039/c4sm00147h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycolipid phase behaviour is less well understood than for many phospholipids, but due to their structural and functional diversity, glycolipids represent an important group of amphiphiles from which biological function is derived. Here we have incorporated a synthetic glycolipid in binary mixtures with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) into giant unilamellar vesicles (GUVs) at biologically relevant concentrations and observed the phase behaviour of the lipid mixtures for a range of glycolipid concentrations. At low concentrations, the glycolipid is fully dispersed in the GUV membrane. At glycolipid molar concentrations above 10%, the formation of lipid tubules is observed, and is consistent with the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can be formed. This work may offer insights into the biological function of glycolipids and the challenges in formulating them for use in industrial applications.
Collapse
Affiliation(s)
- Urszula M Migas
- Department of Chemistry, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland.
| | | | | | | |
Collapse
|
19
|
Nguan H, Ahmadi S, Hashim R. Molecular dynamics simulations of the lyotropic reverse hexagonal (HII) of Guerbet branched-chain β-d-glucoside. Phys Chem Chem Phys 2014; 16:324-34. [DOI: 10.1039/c3cp52385c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:481-94. [PMID: 24333385 DOI: 10.1016/j.bbabio.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Chloroplast thylakoid membranes accommodate densely packed protein complexes in ordered, often semi-crystalline arrays and are assembled into highly organized multilamellar systems, an organization warranting a substantial degree of stability. At the same time, they exhibit remarkable structural flexibility, which appears to play important - yet not fully understood - roles in different short-term adaptation mechanisms in response to rapidly changing environmental conditions. In this review I will focus on dynamic features of the hierarchically organized photosynthetic machineries at different levels of structural complexity: (i) isolated light harvesting complexes, (ii) molecular macroassemblies and supercomplexes, (iii) thylakoid membranes and (iv) their multilamellar membrane systems. Special attention will be paid to the most abundant systems, the major light harvesting antenna complex, LHCII, and to grana. Two physical mechanisms, which are less frequently treated in the literature, will receive special attention: (i) thermo-optic mechanism -elementary structural changes elicited by ultrafast local heat transients due to the dissipation of photon energy, which operates both in isolated antenna assemblies and the native thylakoid membranes, regulates important enzymatic functions and appears to play role in light adaptation and photoprotection mechanisms; and (ii) the mechanism by which non-bilayer lipids and lipid phases play key role in the functioning of xanthophyll cycle de-epoxidases and are proposed to regulate the protein-to-lipid ratio in thylakoid membranes and contribute to membrane dynamics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary.
| |
Collapse
|
21
|
Bennett WD, Tieleman DP. Computer simulations of lipid membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1765-76. [DOI: 10.1016/j.bbamem.2013.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
22
|
Kapla J, Wohlert J, Stevensson B, Engström O, Widmalm G, Maliniak A. Molecular dynamics simulations of membrane-sugar interactions. J Phys Chem B 2013; 117:6667-73. [PMID: 23662588 DOI: 10.1021/jp402385d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well documented that disaccharides in general and trehalose (TRH) in particular strongly affect physical properties and functionality of lipid bilayers. We investigate interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH by means of molecular dynamics (MD) computer simulations. Ten different TRH concentrations were studied in the range wTRH = 0-0.20 (w/w). The potential of mean force (PMF) for DMPC bilayer-TRH interactions was determined using two different force fields, and was subsequently used in a simple analytical model for description of sugar binding at the membrane interface. The MD results were in good agreement with the predictions of the model. The net affinities of TRH for the DMPC bilayer derived from the model and MD simulations were compared with experimental results. The area per lipid increases and the membrane becomes thinner with increased TRH concentration, which is interpreted as an intercalation effect of the TRH molecules into the polar part of the lipids, resulting in conformational changes in the chains. These results are consistent with recent experimental observations. The compressibility modulus related to the fluctuations of the membrane increases dramatically with increased TRH concentration, which indicates higher order and rigidity of the bilayer. This is also reflected in a decrease (by a factor of 15) of the lateral diffusion of the lipids. We interpret these observations as a formation of a glassy state at the interface of the membrane, which has been suggested in the literature as a hypothesis for the membrane-sugar interactions.
Collapse
Affiliation(s)
- Jon Kapla
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
López CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ. Martini Force Field Parameters for Glycolipids. J Chem Theory Comput 2013; 9:1694-708. [DOI: 10.1021/ct3009655] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- César A. López
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Zofie Sovova
- Faculty
of Science, University
of South Bohemia, Czech Republic, and Institute of Nanobiology and
Structural Biology GCRC ASCR, v.v.i. Nove Hrady, Czech Republic
| | - Floris J. van Eerden
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Alex H. de Vries
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences
and Biotechnology (GBB) Institute and Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| |
Collapse
|
24
|
Ye W, Liebau J, Mäler L. New Membrane Mimetics with Galactolipids: Lipid Properties in Fast-Tumbling Bicelles. J Phys Chem B 2013; 117:1044-50. [DOI: 10.1021/jp311093p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weihua Ye
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| | - Jobst Liebau
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| | - Lena Mäler
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| |
Collapse
|
25
|
Manickam Achari V, Nguan HS, Heidelberg T, Bryce RA, Hashim R. Molecular Dynamics Study of Anhydrous Lamellar Structures of Synthetic Glycolipids: Effects of Chain Branching and Disaccharide Headgroup. J Phys Chem B 2012; 116:11626-34. [DOI: 10.1021/jp302292s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Hock Seng Nguan
- Department
of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia
| | | | - Richard A. Bryce
- School of Pharmacy and Pharmaceutical
Sciences, University of Manchester, Manchester,
M13 9PT, U.K
| | - Rauzah Hashim
- Department
of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia
- Kavli Institute
of Theoretical
Physics China, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4:17. [PMID: 22889332 PMCID: PMC3542060 DOI: 10.1186/1758-2946-4-17] [Citation(s) in RCA: 5130] [Impact Index Per Article: 394.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/31/2012] [Indexed: 11/23/2022] Open
Abstract
Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from
http://avogadro.openmolecules.net.
Collapse
Affiliation(s)
- Marcus D Hanwell
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.
| | | | | | | | | | | |
Collapse
|
27
|
DeMarco ML. Three-Dimensional Structure of Glycolipids in Biological Membranes. Biochemistry 2012; 51:5725-32. [DOI: 10.1021/bi3003633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mari L. DeMarco
- Division of Laboratory
and Genomic Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|