1
|
Kathmann SM. Electric fields and potentials in condensed phases. Phys Chem Chem Phys 2021; 23:23836-23849. [PMID: 34647950 DOI: 10.1039/d1cp03571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electric fields and potentials inside and at the interface of matter are relevant to many branches of physics, chemistry, and biology. Accurate quantification of these fields and/or potentials is essential to control and exploit chemical and physical transformations. Before we understand the response of matter to external fields, it is first important to understand the intrinsic interior and interfacial fields and potentials, both classically and quantum mechanically, as well as how they are probed experimentally. Here we compare and contrast, beginning with the hydrogen atom in vacuum and ending with concentrated aqueous NaCl electrolyte, both classical and quantum mechanical electric potentials and fields. We make contact with experimental vibrational Stark, electrochemical, X-ray, and electron spectroscopic probes of these potentials and fields, outline relevant conceptual difficulties, and underscore the advantage of electron holography as a basis to better understand electrostatics in matter.
Collapse
Affiliation(s)
- Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
2
|
Abstract
Dimethyl sulfoxide (DMSO) water mixtures have been widely studied due to their unique concentration-dependent bulk properties. Here, we present an empirical spectroscopic map for the sulfinyl (S=O) stretching mode. The model can be used to interpret infrared (IR) absorption and ultrafast two-dimensional infrared (2D IR) spectra and quantify hydrogen bond populations and lifetimes by directly connecting spectroscopic measurements with structures and dynamics from molecular dynamics simulations. The electrostatic map is directly parameterized against experimental absorption spectra in the S=O stretching region (980-1100 cm-1) of dilute DMSO in water. A comparison of center peak frequencies shows that the map performs well across the entire DMSO concentration range, accurately reproducing the ∼10 cm-1 red-shift per hydrogen bond observed in the experiments. We further benchmark the map by comparing experimental and simulated 2D IR spectra generated by direct numerical integration of the Schrödinger equation. We expect that this empirical frequency map will provide a quantitative platform for investigating intermolecular interactions, microscopic heterogeneity, and ultrafast dynamics in complex liquid mixtures containing DMSO.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, USA
| |
Collapse
|
3
|
Yu Y, Shi L. Vibrational solvatochromism of the ester carbonyl vibration of PCBM in organic solutions. J Chem Phys 2019. [DOI: 10.1063/1.5111046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Yue Yu
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|
4
|
Cai K, Zheng X, Du F. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:150-157. [PMID: 28448953 DOI: 10.1016/j.saa.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China.
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
5
|
Durán-Riveroll LM, Cembella AD, Band-Schmidt CJ, Bustillos-Guzmán JJ, Correa-Basurto J. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4. Toxins (Basel) 2016; 8:toxins8050129. [PMID: 27164145 PMCID: PMC4885044 DOI: 10.3390/toxins8050129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 01/26/2023] Open
Abstract
Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.
Collapse
Affiliation(s)
- Lorena M Durán-Riveroll
- Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional, La Paz, B. C. S. 23096, Mexico.
| | - Allan D Cembella
- Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, Bremerhaven 27570, Germany.
| | - Christine J Band-Schmidt
- Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional, La Paz, B. C. S. 23096, Mexico.
| | | | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Escuela Superior de Medicina-Instituto Politécnico Nacional, Mexico City 11340, Mexico.
| |
Collapse
|
6
|
Wolke CT, Fournier JA, Miliordos E, Kathmann SM, Xantheas SS, Johnson MA. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra. J Chem Phys 2016; 144:074305. [DOI: 10.1063/1.4941285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Conrad T. Wolke
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Joseph A. Fournier
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Evangelos Miliordos
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Shawn M. Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S. Xantheas
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Cai K, Du F, Zheng X, Liu J, Zheng R, Zhao J, Wang J. General Applicable Frequency Map for the Amide-I Mode in β-Peptides. J Phys Chem B 2016; 120:1069-79. [PMID: 26824578 DOI: 10.1021/acs.jpcb.5b11643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Renhui Zheng
- Beijing National Laboratory for Molecular Sciences, Structural Chemistry of Unstable and Stable Species Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
8
|
Masunov AE, Anderson D, Freidzon AY, Bagaturyants AA. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field. J Phys Chem A 2015; 119:6807-15. [DOI: 10.1021/acs.jpca.5b03877] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Alexandra Ya. Freidzon
- Photochemistry
Center RAS, ul. Novatorov 7a, Moscow, 119421, Russia
- National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, Russia
| | - Alexander A. Bagaturyants
- Photochemistry
Center RAS, ul. Novatorov 7a, Moscow, 119421, Russia
- National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, Russia
| |
Collapse
|
9
|
Sowula M, Misiaszek T, Bartkowiak W. Solvent effect on the vibrational spectrum of Michler's ketone. Experimental and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:678-685. [PMID: 24890690 DOI: 10.1016/j.saa.2014.04.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/24/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
We examined solvent effect on the IR and Raman spectra of MK in several solvents of different polarity and proticity, for understanding of intermolecular interactions, focusing on solvent effect in detail. It has been found that change of solvent polarity has an ambiguous influence on solvatochromism of MK. We have observed that not only vibrations of carbonyl group are affected by the solvent polarity, but also mode ν(CN) and ν(CC) in IR and Raman spectra of MK. Experimental investigations have been supported by the quantum-mechanical computations to gain more insight into the solvatochromic behavior of Michler's ketone. Calculations have been carried using Kohn-Sham formulation of Density Functional Theory (DFT) and the Polarizable Continuum Model (PCM) was employed to account for solute solvent interactions.
Collapse
Affiliation(s)
- Marta Sowula
- Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Tomasz Misiaszek
- Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wojciech Bartkowiak
- Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
10
|
Peran I, Oudenhoven T, Woys AM, Watson M, Zhang TO, Carrico I, Zanni MT, Raleigh DP. General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins. J Phys Chem B 2014; 118:7946-53. [PMID: 24749542 PMCID: PMC4317048 DOI: 10.1021/jp5008279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/19/2014] [Indexed: 11/28/2022]
Abstract
A high-sensitivity metal-carbonyl-based IR probe is described that can be incorporated into proteins or other biomolecules in very high yield via Click chemistry. A two-step strategy is demonstrated. First, a methionine auxotroph is used to incorporate the unnatural amino acid azidohomoalanine at high levels. Second, a tricarbonyl (η(5)-cyclopentadienyl) rhenium(I) probe modified with an alkynyl linkage is coupled via the Click reaction. We demonstrate these steps using the C-terminal domain of the ribosomal protein L9 as a model system. An overall incorporation level of 92% was obtained at residue 109, which is a surface-exposed residue. Incorporation of the probe into a surface site is shown not to perturb the stability or structure of the target protein. Metal carbonyls are known to be sensitive to solvation and protein electrostatics through vibrational lifetimes and frequency shifts. We report that the frequencies and lifetimes of this probe also depend on the isotopic composition of the solvent. Comparison of the lifetimes measured in H2O versus D2O provides a probe of solvent accessibility. The metal carbonyl probe reported here provides an easy and robust method to label very large proteins with an amino-acid-specific tag that is both environmentally sensitive and a very strong absorber.
Collapse
Affiliation(s)
- Ivan Peran
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tracey Oudenhoven
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Ann Marie Woys
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Matthew
D. Watson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tianqi O. Zhang
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Isaac Carrico
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
11
|
Lee MW, Carr JK, Göllner M, Hamm P, Meuwly M. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations. J Chem Phys 2014; 139:054506. [PMID: 23927269 DOI: 10.1063/1.4815969] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Myung Won Lee
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Lee J, Jeon J, Kim MS, Lee H, Cho M. Amide I IR probing of core and shell hydrogen-bond structures in reverse micelles. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The properties of N-methylacetamide (NMA) molecules encapsulated in the reverse micelles (RMs) formed by anionic surfactant aerosol OT (AOT), are studied with vibrational spectroscopy and computation. Vibrational spectra of the amide I′ mode of the fully deuterated NMA-d7 show gradual increase of peak frequencies and line broadening as the size of RMs decreases. Analyses of the spectral features reveal the presence of three states of NMA-d7 that correspond to NMA located in the core of water phase (absorption frequency of 1606 cm–1) and two types of interfacial NMA near the surfactant layer (1620 and 1644 cm–1). In larger RMs with water content w0 = [D2O]/[AOT] ≥ 10, only the first two states are observed, whereas in smaller RMs, the population of the third state grows up to 25 % at w0 = 2. These results indicate the general validity of the two-state core/shell model for the confined aqueous solution of NMA, with small modifications due to the system-dependent solute-interface interaction. However, simulations of small RM systems with w0 ≤ 15 show continuous variations of the population, frequency shifts, and the solute-solvent interaction strengths at solute-interface distance less than 4 Å. Thus, the distinction of solute core/shell states tends to be blurred in small RMs but is still effective in interpreting the average spectroscopic observables.
Collapse
|
13
|
Cai K, Su T, Lin S, Zheng R. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:548-556. [PMID: 24036186 DOI: 10.1016/j.saa.2013.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
A general electrostatic potential map based on molecular mechanics force field for modeling the amide I frequency is presented. This map is applied to N-methylacetamide (NMA) and designed to be transferable in different micro-environments. The electrostatic potentials from solvent and peptide side chain are projected on the amide unit of NMA to induce the frequency shift of amide I mode. It is shown that the predicted amide I frequency reproduces the experimental data satisfactorily, especially when NMA in polar solvents. The amide I frequency shift is largely determined by the solvents in aqueous solution while it is dominated by the local structure of peptide in other solvent environments. The map parameters are further applied on NMA-MeOH system and the obtained IR spectra show doublet peak profile with negligible deviation from the experimental data, suggesting the usefulness of this general map for providing information about vibrational parameters of amide motions of peptide in different environments.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China.
| | | | | | | |
Collapse
|
14
|
Fried SD, Wang LP, Boxer SG, Ren P, Pande VS. Calculations of the electric fields in liquid solutions. J Phys Chem B 2013; 117:16236-48. [PMID: 24304155 DOI: 10.1021/jp410720y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electric field created by a condensed-phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution-phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe nonpolar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and to identify for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins.
Collapse
Affiliation(s)
- Stephen D Fried
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
15
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
16
|
Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 2013; 117:5009-18. [PMID: 23537223 DOI: 10.1021/jp402946c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label's frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm(-1), and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, and -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | | | | | | | | |
Collapse
|
17
|
Brookes JF, Slenkamp KM, Lynch MS, Khalil M. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy. J Phys Chem A 2013; 117:6234-43. [PMID: 23480848 DOI: 10.1021/jp4005345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.
Collapse
Affiliation(s)
- Jennifer F Brookes
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
18
|
Lee H, Choi JH, Cho M. Vibrational solvatochromism and electrochromism. II. Multipole analysis. J Chem Phys 2013; 137:114307. [PMID: 22998262 DOI: 10.1063/1.4751477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small infrared probe molecules have been widely used to study local electrostatic environment in solutions and proteins. Using a variety of time- and frequency-resolved vibrational spectroscopic methods, one can accurately measure the solvation-induced vibrational frequency shifts and the timescales and amplitudes of frequency fluctuations of such IR probes. Since the corresponding frequency shifts are directly related to the local electric field and its spatial derivatives of the surrounding solvent molecules or amino acids in proteins, one can extract information on local electric field around an IR probe directly from the vibrational spectroscopic results. Here, we show that, carrying out a multipole analysis of the solvatochromic frequency shift, the solvatochromic dipole contribution to the frequency shift is not always the dominant factor. In the cases of the nitrile-, thiocyanato-, and azido-derivatized molecules, the solvatochromic quadrupole contributions to the corresponding stretch mode frequency shifts are particularly large and often comparable to the solvatochromic dipole contributions. Noting that the higher multipole moment-solvent electric field interactions are short range effects in comparison to the dipole interaction, the H-bonding interaction-induced vibrational frequency shift can be caused by such short-range multipole-field interaction effects. We anticipate that the present multipole analysis method specifically developed to describe the solvatochromic vibrational frequency shifts will be useful to understand the intermolecular interaction-induced vibrational property changes and to find out a relationship between vibrational solvatochromism and electrochromism of IR probes in condensed phases.
Collapse
Affiliation(s)
- Hochan Lee
- Department of Chemistry and Research Institute for Basic Sciences, Korea University, Seoul 136-713, South Korea
| | | | | |
Collapse
|
19
|
Pazos IM, Gai F. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability. J Phys Chem B 2012; 116:12473-8. [PMID: 22998405 PMCID: PMC3475735 DOI: 10.1021/jp307414s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While the thermodynamic effects of trimethylamine oxide (TMAO), urea, and guanidine hydrochloride (GdnHCl) on protein stability are well understood, the underlying mechanisms of action are less well characterized and, in some cases, even under debate. Herein, we employ the stretching vibration of two infrared (IR) reporters, i.e., nitrile (C≡N) and carbonyl (C═O), to directly probe how these cosolvents mediate the ability of water to form hydrogen bonds with the solute of interest, e.g., a peptide. Our results show that these three agents, despite having different effects on protein stability, all act to decrease the strength of the hydrogen bonds formed between water and the infrared probe. While the behavior of TMAO appears to be consistent with its protein-protecting ability, those of urea and GdnHCl are inconsistent with their role as protein denaturants. The latter is of particular interest as it provides strong evidence indicating that although urea and GdnHCl can perturb the hydrogen-bonding property of water their protein-denaturing ability does not arise from a simple indirect mechanism.
Collapse
Affiliation(s)
- Ileana M. Pazos
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
20
|
Kim H, Lee H, Lee G, Kim H, Cho M. Hofmeister anionic effects on hydration electric fields around water and peptide. J Chem Phys 2012; 136:124501. [DOI: 10.1063/1.3694036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|