1
|
Hoffmann G, Chermette H, Morell C. Revisiting nucleophilicity: an index for chemical reactivity from a CDFT approach. J Mol Model 2024; 30:232. [PMID: 38937336 DOI: 10.1007/s00894-024-06020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Understanding and predicting the nucleophilic reactivity are paramount in elucidating organic chemical reactions and designing new synthetic pathways. In this study, we propose a nucleophilicity index within the framework of Conceptual Density Functional Theory (CDFT). Through rigorous theoretical formulations, we introduce an original quantum reactivity descriptor that captures the nucleophilic propensity of molecules based on their electronic structure and chemical environment. Subsequently, this proposed index is applied to a series of nucleophiles (pyrrolidines derivatives), spanning a diverse range of chemical functionalities. Our computational assessments reveal insightful correlations between the predicted nucleophilicity index and experimental observations of nucleophilic behavior. Thereby, they offer a promising avenue for advancing the understanding of organic reactivity and guiding synthetic efforts. METHODS Experimentally, Mayr's experimental parameters accounting for nucleophilicity were selected for the pyrrolidines. This study used DFT calculations at the B3LYP/Aug-cc-pVTZ level of theory using the Gaussian 16 program. Geometry optimization was thus performed, and the methodology employed for the computation of quantum reactivity descriptor is presented. Solvent effect was also taken into account using IEFPCM, and empirical dispersion correction (GD3) was employed.
Collapse
Affiliation(s)
- Guillaume Hoffmann
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France.
| | - Henry Chermette
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France
| | - Christophe Morell
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France
| |
Collapse
|
2
|
Azofra LM, Elguero J, Alkorta I. A Conceptual DFT Study of Phosphonate Dimers: Dianions Supported by H-Bonds. J Phys Chem A 2020; 124:2207-2214. [DOI: 10.1021/acs.jpca.9b10681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luis Miguel Azofra
- CIDIA-FEAM (Unidad Asociada al Consejo Superior de Investigaciones Científicas, CSIC, avalada por el Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla), Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
3
|
Cui Y, Cui X, Zhang L, Xie Y, Yang M. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters. J Chem Phys 2018; 148:134308. [DOI: 10.1063/1.5023408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yingqi Cui
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xianhui Cui
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yujuan Xie
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
4
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
5
|
Chaquin P, Fuster F. Analysis of Reaction Processes On the Basis of the Evolution of Dynamic Orbital Forces: Examples of Cycloadditions, S N 2 Substitution, Nucleophilic Addition, and Hydrogen Transposition. Chemphyschem 2017; 18:2873-2880. [PMID: 28745451 DOI: 10.1002/cphc.201700820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/12/2022]
Abstract
The derivative of the energy of a canonical molecular orbital (MO) [or dynamical orbital forces (DOFs)] with respect to a bond length provides a reliable index of the bonding/antibonding character of this MO on this bond. The DOFs of selected MOs as a function of the reaction coordinate were computed for a panel of model reaction mechanisms: [2+4] (Diels-Alder) cycloaddition, [2+2] cycloaddition, second-order nucleophilic substitution (SN 2), nucleophilic addition to a carbonyl group, and [1,2] hydrogen transposition. The results highlight the nature of the reorganization of the main MOs and the stage of the reaction coordinate (RC) at which it occurs. For instance, in the Diels-Alder reaction, one can identify a part of the reaction that is dominated by repulsive four-electron interactions and another part dominated by attractive two-electron interactions. Also, the shape of the DOF as a function of the reaction coordinate reveals the existence of avoided MO crossings and their location on the RC. Even for spontaneous reactions with monotonic variation in the potential energy, extrema of the MO energy and sudden electron rearrangements can be put into evidence. This study provides quantitative support to classical MO analyses of reactivity such as correlation diagrams and frontier approximation.
Collapse
Affiliation(s)
- Patrick Chaquin
- Laboratoire de Chimie Théorique, LCT, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7616, Paris, F-75005, France
| | - Franck Fuster
- Laboratoire de Chimie Théorique, LCT, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7616, Paris, F-75005, France
| |
Collapse
|
6
|
Giri S, Inostroza-Rivera R, Jana M. The Beckmann rearrangement in the framework of reaction electronic flux. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-2025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Jędrzejewski M, Ordon P, Komorowski L. Atomic Resolution for the Energy Derivatives on the Reaction Path. J Phys Chem A 2016; 120:3780-7. [PMID: 27187521 DOI: 10.1021/acs.jpca.6b03408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Definite algorithms for calculation of the atomic contributions to the reaction force Fξ and the reaction force constant kξ (the first and the second derivatives of the energy over the reaction path step) are presented. The electronic part in the atomic and group contributions has been separated, and this opened the way to identification of the reactive molecule fragments on the consecutive stages of the reaction path. Properties have been studied for the two canonical test reactions: CO + HF → HCOF and HONS → ONSH.
Collapse
Affiliation(s)
- Mateusz Jędrzejewski
- Department of Physical and Quantum Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Ordon
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences , ul. Norwida 25, 50-373 Wrocław, Poland
| | - Ludwik Komorowski
- Department of Physical and Quantum Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Morell C, Tognetti V, Bignon E, Dumont E, Hernandez-Haro N, Herrera B, Grand A, Gutiérrez-Oliva S, Joubert L, Toro-Labbé A, Chermette H. Insights into the chemical meanings of the reaction electronic flux. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1730-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kiyooka SI, Kaneno D, Fujiyama R. Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kiyooka SI, Kaneno D, Fujiyama R. Parr’s index to describe both electrophilicity and nucleophilicity. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|