1
|
Mahmoudi R, Mohammadi S, Mahmoudi R, Fouani MH, Ardakani MT, Hadi A, Nikseresht M, Barmak MJ, Karimpour F, Bardania H. Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer. IET Nanobiotechnol 2024; 2024:4959295. [PMID: 39629226 PMCID: PMC11614510 DOI: 10.1049/nbt2/4959295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
In the present study, arginine-glycine-aspartic acid peptide (RGD) surface functionalized liposomes (Lips) were formulated for the concomitant targeted delivery of two antineoplastic drugs, namely curcumin (Cur) and 5-fluorouracil (5FU) to breast cancer cells. The Lips' measured size values where 50-100 nm by transmission electron microscopy (TEM) and 169 ± 10.2 nm by dynamic light scattering (DLS), which fall within the desired range required for drug delivery purposes. In this study, we assessed the antineoplastic effects of various liposomal formulations for the codelivery of Cur and 5FU to MCF-7 breast cancer cells. We evaluated two liposomal formulations (Lip-Cur-5FU) and (Lip-Cur-5FU-RGD). The treatment of MCF-7 cells with 32 µg/mL of Cur exhibited a significant (p < 0.0001) drop in cell viability among the three formulations, namely Cur and 5Fu in the free form (Lip-Cur-5FU) and liposomal form (Lip-Cur-5FU-RGD); the least viability rate (9.91% ± 1.65%) corresponded to the RGD functionalized concomitantly Cur and 5Fu loaded Lips (Lip-Cur-5FU-RGD) formulation. On the other hand, liposomal Cur increased the rate of early apoptotic cell by 4.88% without altering the rate of late apoptotic cells. Furthermore, the concomitant treatment of MCF-7 cells with Cur and 5FU enhanced the overall apoptosis rate, where Cur-5FU in the RGD functionalized-liposomal form induced the highest (16.8%) apoptosis rate, while other Cur-5FU formulations, free and nonfunctionalized liposomal form, induced lower apoptosis rates (10.4% and 10.9%, respectively). Collectively our results demonstrated that the implementation of RGD-functionalized Lips for the concomitant delivery of Cur and 5FU enhanced their therapeutic efficacy against this breast cancer model.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Somayeh Mohammadi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Rouzbeh Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Tajali Ardakani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohsen Nikseresht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzad Karimpour
- Social Determinants of Health Research Center, Yasuj University of Medical Science, Yasuj, Iran
| | - Hassan Bardania
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
2
|
Hu L, Xie G, Lan Q, Yu Z, Hu L, Zhu L. Quantitative UPLC-MS/MS to Detect DMPC and DPPC Applied to Paraquat Poisoning in Cells and Serum. Chromatographia 2022. [DOI: 10.1007/s10337-021-04113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zhao Y, Liu K, Li J, Liao J, Ma L. Engineering of hybrid anticancer drug-loaded polymeric nanoparticles delivery system for the treatment and care of lung cancer therapy. Drug Deliv 2021; 28:1539-1547. [PMID: 34282705 PMCID: PMC8293970 DOI: 10.1080/10717544.2021.1934187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 10/31/2022] Open
Abstract
Chemotherapy with combination drugs has become one of the most commonly used cancer prevention treatments, with positive clinical results. The goal of this study was to develop compostable polymeric nanomaterials (NMs) for the delivery of puerarin (PRN) and 5-fluorouracil (5FU), as well as to investigate the anticancer activity of the drug delivery system (PRN-5FU NMs) against in vitro and in vivo lung cancer cells. Since double antitumor drugs PRN and 5FU are insufficiently compressed in polymer-based bio-degradable nanoparticles, encapsulation of PRN and 5FU antitumor drugs were co-encapsulated with polyethylene glycol and polylactidecoglycolide nanoparticles (NMs) is efficient. The arrangement of PRN NMs, 5FU NMs, and PRN-5FU NMs, as well as the nanoparticles shape and scale, were studied using transmission electron microscopy (TEM). 5FU-PRN NMs triggered apoptosis in lung carcinoma cell lines such as HEL-299 and A549 in vitro. Acridine orange/ethidium bromide (AO/EB) and nuclear damaging staining techniques were used to observe morphologies and cell death. The mechanistic analysis of apoptosis was also confirmed by flow cytometry analysis using dual staining. When compared to free anticancer products, the hemolysis analysis findings of the 5FU-PRN NMs showed excellent biocompatibility. Taken together the advantages, this combination drug conveyance strategy exposed that 5FU-PRN NMs could have a significant promising to improve the effectiveness of lung cancer cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Kefeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jie Li
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Juan Liao
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
4
|
Franconi F, Lemaire L, Gimel JC, Bonnet S, Saulnier P. NMR diffusometry: A new perspective for nanomedicine exploration. J Control Release 2021; 337:155-167. [PMID: 34280413 DOI: 10.1016/j.jconrel.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based diffusion methods open new perspectives for nanomedicine characterization and their bioenvironment interaction understanding. This review summarizes the theoretical background of diffusion phenomena. Self-diffusion and mutual diffusion coefficient notions are featured. Principles, advantages, drawbacks, and key challenges of NMR diffusometry spectroscopic and imaging methods are presented. This review article also gives an overview of representative applicative works to the nanomedicine field that can contribute to elucidate important issues. Examples of in vitro characterizations such as identification of formulated species, process monitoring, drug release follow-up, nanomedicine interactions with biological barriers are presented as well as possible transpositions for studying in vivo nanomedicine fate.
Collapse
Affiliation(s)
- Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | | | - Samuel Bonnet
- Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
5
|
Ezekiel CI, Bapolisi AM, Walker RB, Krause RWM. Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics 2021; 13:821. [PMID: 34205990 PMCID: PMC8229429 DOI: 10.3390/pharmaceutics13060821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer is the third most diagnosed cancer and the second leading cause of death. The use of 5-fluorouracil (5-FU) has been the major chemotherapeutic treatment for colorectal cancer patients. However, the efficacy of 5-FU is limited by drug resistance, and bone marrow toxicity through high-level expression of thymidylate synthase, justifying the need for improvement of the therapeutic index. In this study, the effects of ultrasound on echogenic 5-FU encapsulated crude soy liposomes were investigated for their potential to address these challenges. Liposomes were prepared by thin-film hydration using crude soy lecithin and cholesterol. Argon gas was entrapped in the liposomes for sonosensitivity (that is, responsiveness to ultrasound). The nanoparticles were characterized for particle size and morphology. The physicochemical properties were also evaluated using differential scanning calorimetry, Fourier transform infrared and X-ray diffraction. The release profile of 5-FU was assessed with and without 20 kHz low-frequency ultrasound waves at various amplitudes and exposure times. The result reveal that 5-FU-loaded liposomes were spherical with an encapsulation efficiency of approximately 60%. Approximately 65% of 5-FU was released at the highest amplitude and exposure time was investigated. The results are encouraging for the stimulated and controlled release of 5-FU for the management of colorectal cancer.
Collapse
Affiliation(s)
- Charles Izuchukwu Ezekiel
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Alain Murhimalika Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, Eastern Cape, South Africa;
| | - Rui Werner Maçedo Krause
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
- Center for Chemico and Biomedicinal Research, Rhodes University, Makhanda 6140, Eastern Cape, South Africa
| |
Collapse
|
6
|
Yao Y, Dai X, Tan Y, Chen Y, Liao C, Yang T, Chen Y, Yu Y, Zhang S. Deep Drug Penetration of Nanodrug Aggregates at Tumor Tissues by Fast Extracellular Drug Release. Adv Healthc Mater 2021; 10:e2001430. [PMID: 33274859 DOI: 10.1002/adhm.202001430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Indexed: 02/05/2023]
Abstract
Herein, a new nanodrug of azobenzene-functionalized interfacial cross-linked reverse micelles (AICRM) with 5-fluorouracil loading (5-FU@AICRM) is reported. Upon irradiation with 530 nm light in water, the surface azobenzenes of the nanoparticles change from polar cis-conformation to nonpolar trans-conformation, resulting in the aggregation of 5-FU@AICRM within minutes. Simultaneously, the conformation change unlocks hydrophilic 5-FU with a strong water immigration propensity, allowing them to spray out from the AICRM quickly. This fast release ensures a thorough release of the drug, before the aggregates are internalized by adjacent cells, making it possible to achieve deep tissue penetration. A study of in vivo anticancer activity in A549 tumor-bearing nude mice shows that the tumor inhibition rate (TIR) of 5-FU@AICRM is up to ≈86.2%, 31.6% higher than that of group without green light irradiation and 20.7% higher than that of carmofur (CF, a hydrophobic analog of 5-FU)-loaded AICRM (CF@AICRM), in which CF is released slowly under light irradiation because of its hydrophobicity. Fast drug release upon nanodrug aggregation provides a good solution for balancing the contradiction of "aggregation and penetration" in tumor treatment with nanodrugs.
Collapse
Affiliation(s)
- Yongchao Yao
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital Sichuan University Chengdu 610041 China
| | - Xin Dai
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
- Zunyi Medical and Pharmaceutical College Pingan Road, Xinpu District Zunyi 56300 China
| | - Yifeng Tan
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Ying Chen
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
- School of Pharmaceutical Sciences Guizhou Medical University Guian New District Guiyang 550025 China
| | - Chunyan Liao
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Tian Yang
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yun Chen
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
7
|
Dupertuis YM, Boulens N, Angibaud E, Briod AS, Viglione A, Allémann E, Delie F, Pichard C. Antitumor Effect of 5-Fluorouracil-Loaded Liposomes Containing n-3 Polyunsaturated Fatty Acids in Two Different Colorectal Cancer Cell Lines. AAPS PharmSciTech 2021; 22:36. [PMID: 33404935 PMCID: PMC7788038 DOI: 10.1208/s12249-020-01897-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
It has been shown that long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) could act synergistically with 5-fluorouracil (5-FU) to kill cancer cells. To facilitate their simultaneous transport in the bloodstream, we synthesized, for the first time, liposomes (LIPUFU) containing 5-FU in the aqueous core and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) at a ratio of 1:2 in the lipid bilayer. LIPUFU werestable with uniform size of 154 ± 4 nm, PDI of 0.19 ± 0.03 and zeta potential of -41 ± 2 mV. They contained 557 ± 210 μmol/l DHA, 1467 ± 362 μmol/l EPA, and 9.8 ± 1.1 μmol/l 5-FU. Control liposomes without (LIP) or with only 5-FU (LIFU) or n-3 PUFAs (LIPU) were produced in a similar way. The effects of these different liposomal formulations on the cell cycle, growth, and apoptosis were evaluated in two human colorectal cancer (CRC) cell lines differing in sensitivity to 5-FU, using fluorescence-activated cell sorting analyses. LIPUFU were more cytotoxic than LIP, LIFU, and LIPU in both LS174T (p53+/+, bax-/-) and HT-29 (p53-/0, bax+/+) cell lines. Similar to LIFU, LIPUFU increased the percentage of cells in S phase, apoptosis, and/or necrosis. The cytotoxic potential of LIPUFU was confirmed in vivo by tumor growth inhibition in the chicken chorioallantoic membrane model. These results suggest that LIPUFU could be considered to facilitate the simultaneous transport of 5-FU and n-3 PUFAs to the tumor site, in particular in case of CRC liver metastases.
Collapse
Affiliation(s)
- Yves Marc Dupertuis
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland.
| | - Nathalie Boulens
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuelle Angibaud
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Anna-Sophia Briod
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Alexandre Viglione
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Florence Delie
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Claude Pichard
- Clinical Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| |
Collapse
|
8
|
Banerjee P, Mondal D, Ghosh M, Mukherjee D, Nandi PK, Maiti TK, Sarkar N. Selective Self-Assembly of 5-Fluorouracil through Nonlinear Solvent Response Modulates Membrane Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2707-2719. [PMID: 32097563 DOI: 10.1021/acs.langmuir.9b03544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controllable self-assembly and understanding of the interaction between single metabolite fibrils and live-cell membranes have paramount importance in providing minimal treatment in several neurodegenerative disorders. Here, utilizing the nonlinear nature and peculiar hydrogen bonding behavior of the dimethyl sulfoxide (DMSO)-water mixture, the selective self-assembly of a single metabolite 5-fluorouracil (5-FU) is achieved. A direct correlation between water availability and selective self-assembly of 5-FU is ratified from the excited-state dynamics. The specific fibrillar structures of 5-FU exhibit a great potential to modulate live cell membrane fluidity and model membrane lipid distribution. After 5-FU fibril addition, a disorder of H-bonded water molecules arises several layers beyond the first hydration shell of the polar headgroups, which essentially modifies interfacial water structure and dynamics. Overall, our results shed light on the role of solvent to govern specific self-assembly and also lay the foundation accounting for the earlier stage of several diseases and multidrug resistance.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
9
|
Zambom CR, da Fonseca FH, Crusca E, da Silva PB, Pavan FR, Chorilli M, Garrido SS. A Novel Antifungal System With Potential for Prolonged Delivery of Histatin 5 to Limit Growth of Candida albicans. Front Microbiol 2019; 10:1667. [PMID: 31417503 PMCID: PMC6683761 DOI: 10.3389/fmicb.2019.01667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Currently 75-88% of fungal infections are caused by Candida species, and Candida albicans is the main microorganism that causes these infections, especially oral candidiasis. An option for treatment involves the use of the antifungal peptide Histatin 5 (Hst 5), which is naturally found in human saliva but undergoes rapid degradation when present in the oral cavity, its site of action. For this reason, it is important to develop a way of applying this peptide to the oral lesions, which promotes the gradual release of the peptide. In the present study, we have evaluated the development of liposomes of different lipid compositions, loaded with the peptide as a way to promote its release slowly and gradually, preserving its antifungal potential. For this, the peptide 0WHistatin 5, an analog of the peptide Hst 5, was synthesized, which contains the amino acid tryptophan in its sequence. The solid phase synthesis method was used, followed by cleavage and purification. The liposomes were produced by thin film hydration technique in three different lipid compositions, F1, F2, and F3 and were submitted to an extrusion and sonication process to standardize the size and study the best technique for their production. The liposomes were characterized by dynamic light scattering, and tests were performed to determine the encapsulation efficiency, release kinetics, stability, and evaluation of antifungal activity. The extruded liposomes presented average size in the range of 100 nm, while sonicated liposomes presented a smaller size in the range of 80 nm. The encapsulation efficiency was higher for the sonicated liposomes, being 34.5% for F1. The sonicated F3 presented better stability when stored for 60 days at 4°C. The liposomes showed the ability to release the peptide for the total time of 96 h, with the first peak after 5 h, and a further increase of the released after 30 h. Time-kill assay showed that the liposomes were able to control yeast growth for 72 h. The data suggest that the liposomes loaded with 0WHistatin 5 maintained the action of the peptide and were able to limit the growth of C. albicans, being a suitable system for use in the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Carolina R. Zambom
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Fauller H. da Fonseca
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Edson Crusca
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Patrícia B. da Silva
- Department of Biological Sciences, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Fernando R. Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Marlus Chorilli
- Department of Biological Sciences, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Saulo S. Garrido
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| |
Collapse
|
10
|
Calienni MN, Temprana CF, Prieto MJ, Paolino D, Fresta M, Tekinay AB, Alonso SDV, Montanari J. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation. Drug Deliv Transl Res 2018; 8:496-514. [PMID: 29288359 DOI: 10.1007/s13346-017-0469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.
Collapse
Affiliation(s)
- Maria Natalia Calienni
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina.,Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Carlos Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, B1876BXD, Bernal, Argentina
| | - Maria Jimena Prieto
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Ayse Begum Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey
| | - Silvia Del Valle Alonso
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Jorge Montanari
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina. .,Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
11
|
Li Q, Li H, He C, Jing Z, Liu C, Xie J, Ma W, Deng H. The use of 5-fluorouracil-loaded nanobubbles combined with low-frequency ultrasound to treat hepatocellular carcinoma in nude mice. Eur J Med Res 2017; 22:48. [PMID: 29162156 PMCID: PMC5698940 DOI: 10.1186/s40001-017-0291-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). METHODS A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. RESULTS The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. CONCLUSIONS Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Qiaoya Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Hongyang Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chengjun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhouhong Jing
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Changan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Juan Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Wenwen Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Huisheng Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
12
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
13
|
Huang QJ, Zeng HY, Zhang W, Feng B, Liu XJ, Duan HZ, Ding PX. Loading kinetics of 5-fluorouracil onto hydrotalcite and in vitro drug delivery. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Moniz T, de Castro B, Rangel M, Ivanova G. NMR study of the interaction of fluorescent 3-hydroxy-4-pyridinone chelators with DMPC liposomes. Phys Chem Chem Phys 2016; 18:5027-33. [DOI: 10.1039/c5cp05273d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NMR results corroborate the fact that the presence of the ethyl substituents in the amino groups of the xanthene ring and the thiourea link are fundamental to the ability of the chelator to diffuse across the lipid bilayer and consequently relevant for their enhanced biological activity.
Collapse
Affiliation(s)
- Tânia Moniz
- REQUIMTE-UCIBIO
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Baltazar de Castro
- REQUIMTE-LAVQ
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Maria Rangel
- REQUIMTE-UCIBIO
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- Porto
- Portugal
| | - Galya Ivanova
- REQUIMTE-UCIBIO
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
15
|
Facile synthesis of gold nanorods/hydrogels core/shell nanospheres for pH and near-infrared-light induced release of 5-fluorouracil and chemo-photothermal therapy. Colloids Surf B Biointerfaces 2015; 128:498-505. [PMID: 25794443 DOI: 10.1016/j.colsurfb.2015.02.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We described a facile synthesis of pH and near-infrared (NIR) light dual-sensitive core/shell hybrid nanospheres, consisting of gold nanorods (GNR) as the core and poly(N-isopropylacrylamide-co-methacrylic acid) as the shell, p(NIPAM-MAA). The resultant GNR/p(NIPAM-MAA) nanospheres showed a core/shell structure, with an average diameter of ∼110nm and a strong longitudinal surface plasmon band at NIR region. Due to the photothermal effect of GNR and pH/thermal-sensitive volume transition of p(NIPAM-MAA) hydrogels, the nanospheres with loading of 5-fluorouracil (5-FU) by electrostatic interactions were developed as a smart carrier for pH- and photothermal-induced release of 5-FU. Experimental results testified that the cumulative release of 5-FU from nanospheres was markedly increased in a mild acidic medium. Moreover, a NIR light (808nm) irradiation triggered a greater and faster release of 5-FU, which was further testified by relevant results from in vitro cytotoxicity assay, in vivo tumor growth inhibition and histological images of ex vivo tumor sections. These results revealed significant applications of GNR/p(NIPAM-MAA) nanospheres in controlled release of anticancer agents and photothermal ablation therapy of tumor tissues, accompanied by synergistic effect of chem-photothermal therapy.
Collapse
|
16
|
Petaccia M, Condello M, Giansanti L, La Bella A, Leonelli F, Meschini S, Gradella Villalva D, Pellegrini E, Ceccacci F, Galantini L, Mancini G. Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00077g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomes containing novel 5-fluorouracil derivatives differing in the length of their polyoxyethylenic spacer were shown active against colorectal tumor cells.
Collapse
Affiliation(s)
- M. Petaccia
- Dipartimento di Scienze Fisiche e Chimiche
- Università degli Studi dell'Aquila
- Italy
| | - M. Condello
- Dipartimento Tecnologie e Salute
- Istituto Superiore di Sanità
- 00161 Roma
- Italy
- CNR – Istituto di Metodologie Chimiche
| | - L. Giansanti
- Dipartimento di Scienze Fisiche e Chimiche
- Università degli Studi dell'Aquila
- Italy
| | - A. La Bella
- Dipartimento di Chimica
- Università degli Studi di Roma “Sapienza”
- 00185 Roma
- Italy
| | - F. Leonelli
- Dipartimento di Biologia Vegetale ed Animale
- Università degli Studi di Roma “Sapienza”
- 00185 Roma
- Italy
| | - S. Meschini
- Dipartimento Tecnologie e Salute
- Istituto Superiore di Sanità
- 00161 Roma
- Italy
| | | | - E. Pellegrini
- Dipartimento Tecnologie e Salute
- Istituto Superiore di Sanità
- 00161 Roma
- Italy
| | - F. Ceccacci
- CNR-IMC
- Sezione Meccanismi di Reazione c/o Dipartimento di Chimica
- Università degli Studi di Roma “Sapienza”
- 00185 Roma
- Italy
| | - L. Galantini
- Dipartimento di Chimica
- Università degli Studi di Roma “Sapienza”
- 00185 Roma
- Italy
| | - G. Mancini
- CNR – Istituto di Metodologie Chimiche
- 00016 Monterotondo Scalo (RM)
- Italy
| |
Collapse
|
17
|
Bhargava P, Singh M, Sreekanth V, Bajaj A. Nature of the Charged Headgroup Determines the Fusogenic Potential and Membrane Properties of Lithocholic Acid Phospholipids. J Phys Chem B 2014; 118:9341-8. [DOI: 10.1021/jp504104a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Priyanshu Bhargava
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Manish Singh
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Vedagopuram Sreekanth
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| |
Collapse
|
18
|
Sreekanth V, Bansal S, Motiani RK, Kundu S, Muppu SK, Majumdar TD, Panjamurthy K, Sengupta S, Bajaj A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug Chem 2013; 24:1468-84. [PMID: 23909664 DOI: 10.1021/bc300664k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have synthesized two series of bile acid tamoxifen conjugates using three bile acids lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA). These bile acid-tamoxifen conjugates possess 1, 2, and 3 tamoxifen molecules attached to hydroxyl groups of bile acids having free acid and amine functionalities at the tail region of bile acids. The in vitro anticancer activities of these bile acid-tamoxifen conjugates show that the free amine headgroup based cholic acid-tamoxifen conjugate (CA-Tam3-Am) is the most potent anticancer conjugate as compared to the parent drug tamoxifen and other acid and amine headgroup based bile acid-tamoxifen conjugates. The cholic acid-tamoxifen conjugate (CA-Tam3-Am) bearing three tamoxifen molecules shows enhanced anticancer activities in both estrogen receptor +ve and estrogen receptor -ve breast cancer cell lines. The enhanced anticancer activity of CA-Tam3-Am is due to more favorable irreversible electrostatic interactions followed by intercalation of these conjugates in hydrophobic core of membrane lipids causing increase in membrane fluidity. Annexin-FITC based FACS analysis showed that cells undergo apoptosis, and cell cycle analysis showed the arrest of cells in sub G0 phase. ROS assays showed a high amount of generation of ROS independent of ER status of the cell line indicating changes in mitochondrial membrane fluidity upon the uptake of the conjugate that further leads to the release of cytochrome c, a direct and indirect regulator of ROS. The mechanistic studies for apoptosis using PCR and western analysis showed apoptotsis by intrinsic and extrinsic pathways in ER +ve MCF-7 cells and by only an intrinsic pathway in ER -ve cells. In vivo studies in the 4T1 tumor model showed that CA-Tam3-Am is more potent than tamoxifen. These studies showed that bile acids provide a new scaffold for high drug loading and that their anticancer activities strongly depend on charge and hydrophobicity of lipid-drug conjugates.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- The Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology , 180 Udyog Vihar, Phase 1, Gurgaon-122016, Haryana, India
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gui R, Wan A, Jin H. Retracted Article: Facile synthesis of quantum dots/mesoporous silica/quantum dots core/shell/shell hybrid microspheres for ratiometric fluorescence detection of 5-fluorouracil in human serum. Analyst 2013; 138:5956-64. [DOI: 10.1039/c3an01089a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantum dots/mesoporous silica/quantum dots core/shell/shell microspheres were developed toward the ratiometric fluorescence detection of 5-fluorouracil in human serum.
Collapse
Affiliation(s)
- Rijun Gui
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Ajun Wan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| | - Hui Jin
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R. China
| |
Collapse
|