1
|
Devi M, Paul S. Comprehending the Efficacy of Whitlock's Caffeine-Pincered Molecular Tweezer on β-Amyloid Aggregation. ACS Chem Neurosci 2024; 15:3202-3219. [PMID: 39126645 DOI: 10.1021/acschemneuro.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative conditions, leading to cognitive impairment, with no cure and preventive measures. Misfolding and aberrant aggregation of amyloid-β (Aβ) peptides are believed to be the underlying cause of AD. These amyloid aggregates culminate in the development of toxic Aβ oligomers and subsequent accumulation of β-amyloid plaques amidst neuronal cells in the brain, marking the hallmarks of AD. Drug development for the potentially curative treatment of Alzheimer's is, therefore, a tremendous challenge for the scientific community. In this study, we investigate the potency of Whitlock's caffeine-armed molecular tweezer in combating the deleterious effects of Aβ aggregation, with special emphasis on the seven residue Aβ16-22 fragment. Extensive all-atom molecular dynamics simulations are conducted to probe the various structural and conformational transitions of the peptides in an aqueous medium in both the presence and absence of tweezers. To explore the specifics of peptide-tweezer interactions, radial distribution functions, contact number calculations, binding free energies, and 2-D kernel density plots depicting the variation of distance-angle between the aromatic planes of the peptide-tweezer pair are computed. The central hydrophobic core, particularly the aromatic Phe residues, is crucial in the development of harmful amyloid oligomers. Notably, all analyses indicate reduced interpeptide interactions in the presence of the tweezer, which is attributed to the tweezer-Phe aromatic interaction. Upon increasing the tweezer concentration, the residues of the peptide are further encased in a hydrophobic environment created by the self-aggregating tweezer cluster, leading to the segregation of the peptide residues. This is further aided by the weakening of interstrand hydrogen bonding between the peptides, thereby impeding their self-aggregation and preventing the formation of neurotoxic β-amyloid. Furthermore, the study also highlights the efficacy of the molecular tweezer in destabilizing preformed amyloid fibrils as well as hindering the aggregation of the full-length Aβ1-42 peptide.
Collapse
Affiliation(s)
- Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Roy R, Paul S. Disparate Effect of Hybrid Peptidomimetics Containing Isomers of Aminobenzoic Acid on hIAPP Aggregation. J Phys Chem B 2022; 126:10427-10444. [PMID: 36459988 DOI: 10.1021/acs.jpcb.2c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The abnormal misfolding of human islet amyloid polypeptide (hIAPP) in pancreatic β-cells is implicated in the progression of type II diabetes (T2D). With the prevalence of T2D increasing worldwide, preventing the aggregation of hIAPP has been recognized as a promising therapeutic strategy to control this disease. Recently, a class of novel conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps) was found to demonstrate efficient inhibitory ability toward amyloid formation of hIAPP. One (Ile26) or more (Gly24 and Ile26) residues in these six-membered peptide sequences, which have been extracted from the amyloidogenic core of hIAPP, N22FGAIL27, are substituted by three different isomers of the conformationally restricted aromatic amino acid, i.e., aminobenzoic acid (β, γ, and δ), to generate these BSBHps. The presence of the nonproteinogenic aminobenzoic acid moiety renders the BSBHps to be more stable toward proteolytic degradation. The different isomeric BSBHps exhibit contrasting influence on the self-assembly of hIAPP. The BSBHps containing β- and γ-aminobenzoic acid can sufficiently prevent hIAPP aggregation, but those with the δ-aminobenzoic group stabilize the β-sheet-rich aggregate of hIAPP. The difference in the angle between the amino and carboxyl groups in the isomers of the aminobenzoic moiety causes the BSBHps to attain discrete conformation and hence leads to variation in their binding preference with hIAPP and ultimately their inhibitory potency. This guides the pathway for the dissimilar effect of BSBHps on peptide aggregation and, therefore, provides insights into the design considerations for novel drugs against T2D.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| |
Collapse
|
3
|
Khedri M, Moraveji MK. Microfluidic Engineering of RGD
[1]
‐Terminated Nanocarriers Micellization and In‐Situ Docetaxel Encapsulation: An Atomistic Insight. ChemistrySelect 2022. [DOI: 10.1002/slct.202103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Khedri
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) c No. 350, Hafez Ave, Valiasr Square 15916-34311 Tehran Iran
| | - Mostafa keshavarz Moraveji
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) c No. 350, Hafez Ave, Valiasr Square 15916-34311 Tehran Iran
| |
Collapse
|
4
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
5
|
Warren DB, Haque S, McInerney MP, Corbett KM, Kastrati E, Ford L, Williams HD, Jannin V, Benameur H, Porter CJH, Chalmers DK, Pouton CW. Molecular Dynamics Simulations and Experimental Results Provide Insight into Clinical Performance Differences between Sandimmune® and Neoral® Lipid-Based Formulations. Pharm Res 2021; 38:1531-1547. [PMID: 34561814 DOI: 10.1007/s11095-021-03099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Molecular dynamics (MD) simulations provide an in silico method to study the structure of lipid-based formulations (LBFs) and the incorporation of poorly water-soluble drugs within such formulations. In order to validate the ability of MD to effectively model the properties of LBFs, this work investigates the well-known cyclosporine A formulations, Sandimmune® and Neoral®. Sandimmune® exhibits poor dispersibility and its absorption from the gastrointestinal tract is enhanced when administered after food, whereas Neoral® disperses comparatively well and shows no food effect. METHODS MD simulations were performed of both LBFs to investigate the differences observed in fasted and fed conditions. These conditions were also tested using an in vitro experimental model of dispersion and digestion. RESULTS These MD simulations were able to show that the food effect observed for Sandimmune® can be explained by large changes in drug solubilization on addition of bile. In contrast, Neoral® is well dispersed in water or in simulated fasted conditions, and this dispersion is relatively unchanged on moving to fed conditions. These differences were confirmed using dispersion and digestion in vitro experimental model. CONCLUSIONS The current data suggests that MD simulations are a potential method to model the fate of LBFs in the gastrointestinal tract, predict their dispersion and digestion, investigate behaviour of APIs within the formulations, and provide insights into the clinical performance of LBFs.
Collapse
Affiliation(s)
- Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | | | - Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Endri Kastrati
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Leigh Ford
- Lonza Pharma, Biotech & Nutrition, Melbourne, Australia
| | | | | | | | | | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Melbourne, Australia.
| |
Collapse
|
6
|
Chattaraj KG, Paul S. Underlying Mechanisms of Allopurinol in Eliminating Renal Toxicity Induced by Melamine-Uric Acid Complex Formation: A Computational Study. Chem Res Toxicol 2021; 34:2054-2069. [PMID: 34410109 DOI: 10.1021/acs.chemrestox.1c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using molecular dynamics, we address uric acid (UA) replacement by a model small-molecule inhibitor, allopurinol (AP), from its aggregated cluster in a columnar fashion. Experimentally it has been affirmed that AP is efficient in preventing UA-mediated renal stone formation. However, no study has presented the underlying mechanisms yet. Hence, a theoretical approach is presented for mapping the AP, which binds to melamine (MM) and UA clusters. In AP's presence, the higher-order cluster of UA molecules turns into a lower-order cluster, which "drags" fewer MM to them. Consequently, the MM-UA composite structure gets reduced. It is worth noting that UA-AP and AP-MM hydrogen-bonding interactions often play an essential role in reducing the UA-MM cluster size. Interestingly, an AP around UA makes a pillar-like structure, confirmed by defining the point-plane distribution function. The decomposition of the preferential interaction by Kirkwood-Buff integral into different angles like 0°-30°, 30°-60°, and 60°-90° firmly establishes the phenomenon mentioned above. However, the structural order for such π-stacking interactions between AP and UA molecules is not hierarchical but rather more spontaneous. The driving force behind UA-AP-MM composite formation is the favorable complexation energy that can be inferred by computing pairwise binding free energies for all possible combinations. Performing enhanced sampling and quantum calculations further confirms the evidence for UA degradation.
Collapse
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
7
|
Paul R, Paul S. Exploration on the drug solubility enhancement in aqueous medium with the help of endo-functionalized molecular tubes: a computational approach. Phys Chem Chem Phys 2021; 23:18999-19010. [PMID: 34612438 DOI: 10.1039/d1cp01187a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One major problem in the pharmaceutical industry is the aqueous solubility of newly developed orally administered drug candidates. More than 50% of newly developed drug molecules suffer from low aqueous solubility. The therapeutic effects of drug molecules are majorly dependent on the bioavailability and, in essence, on the solubility of the used drug molecules. Thus, enhancement of drug solubility of sparingly soluble drug molecules is a need of modern times. Considering the high importance of drug solubility, we have computationally shown the enhancement of drug solubility for seven class II (poorly water-soluble) drug molecules in a water medium. The uses of supramolecular macrocycles have immense importance in the same field. Thus, we have used two synthetic supramolecular receptors named host-1a and host-1b to enhance the water solubility of fluorouracil, albendazole, camptothecin, clopidogrel, indomethacin, melphalan, and tolfenamic acid drug molecules. Biomedical engagements of a supramolecular receptor commence with the formation of stable host-drug complexes. These complexations enhance the water solubility of drug molecules and sustain the release rate and bioavailability of drug molecules. Thus, in this work, we focus on the formation of stable host-drug complexes in water medium. Molecular dynamics simulation is applied to analyze the structural features and the energetics involved in the host-drug complexation process. The information obtained at the atomistic level helps us gain better insights into the key interactions that operate to produce such highly stable complexes. Thus, we can propose that these two supramolecular receptors may be used as drug solubilizing agents, and patients will benefit from this theragnostic application shortly.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | | |
Collapse
|
8
|
Muljajew I, Chi M, Vollrath A, Weber C, Beringer-Siemers B, Stumpf S, Hoeppener S, Sierka M, Schubert US. A combined experimental and in silico approach to determine the compatibility of poly(ester amide)s and indomethacin in polymer nanoparticles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Chen C, Huang F, Jia L, Zhang L, Chen E, Liang L, Kong Z, Wang X, Zhang W, Shen JW. Molecular insights into desalination performance of lamellar graphene membranes: Significant of hydrophobicity and interlayer spacing. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
11
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
12
|
Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug-Polymer Amorphous Solid Dispersion Miscibility, Stability, and Formulation Design. Molecules 2021; 26:E182. [PMID: 33401494 PMCID: PMC7794704 DOI: 10.3390/molecules26010182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API-carrier mixture and the principal API-carrier non-bonding interactions are critical factors for rational drug development and formulation decisions. Experimental determination of these interactions, solubility, and dissolution mechanisms is time-consuming, costly, and reliant on trial and error. To that end, molecular modeling has been applied to simulate ASD properties and mechanisms. Quantum mechanical methods elucidate the strength of API-carrier non-bonding interactions, while molecular dynamics simulations model and predict ASD physical stability, solubility, and dissolution mechanisms. Statistical learning models have been recently applied to the prediction of a variety of drug formulation properties and show immense potential for continued application in the understanding and prediction of ASD solubility. Continued theoretical progress and computational applications will accelerate lead compound development before clinical trials. This article reviews in silico research for the rational formulation design of low-solubility drugs. Pertinent theoretical groundwork is presented, modeling applications and limitations are discussed, and the prospective clinical benefits of accelerated ASD formulation are envisioned.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyotika Varshney
- VeriSIM Life Inc., 1 Sansome St, Suite 3500, San Francisco, CA 94104, USA; (D.M.W.); (Y.B.); (A.J.); (V.A.); (K.C.)
| |
Collapse
|
13
|
Angarita-Villamizar AV, Arias ER, Diaz IL, Perez LD. Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Roy R, Paul S. Theoretical Investigation of the Inhibitory Mechanism of Norepinephrine on hIAPP Amyloid Aggregation and the Destabilization of Protofibrils. J Phys Chem B 2020; 124:10913-10929. [DOI: 10.1021/acs.jpcb.0c07830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
16
|
Chattaraj KG, Paul S. Investigation on the Mechanisms of Synchronous Interaction of K 3Cit with Melamine and Uric Acid That Avoids the Formation of Large Clusters. J Chem Inf Model 2020; 60:4827-4844. [PMID: 32786693 DOI: 10.1021/acs.jcim.0c00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uric acid (UA) has an enormous competence to aggregate over melamine (Mel), producing large UA clusters that "drag" Mel toward them. Such a combination of donor-acceptor pairs provides a robust Mel-UA composite, thereby denoting a high complexity. Thus, a straightforward but pragmatic methodology might indeed require either destruction of the aggregation of UA or impediment of the hydrogen-bonded cluster of Mel and UA. Here, potassium citrate (K3Cit) is used as a potent inhibitor for a significant decrease of large UA-Mel clusters. The underlying mechanisms of synchronous interactions between K3Cit and the Mel-UA pair are examined by the classical molecular dynamics simulation coupled with the enhanced sampling method. K3Cit binds to the Mel-UA pair profoundly to produce a Mel-UA-K3Cit complex with favorable complexation energy (as indicated by the reckoning of pairwise ΔGbind° employing the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method). The strength of interaction follows the order UA-K3Cit > Mel-K3Cit > Mel-UA, thus clearly demonstrating the instability caused by upsetting the π-stacking of UA and hydrogen bonding of Mel-UA simultaneously. The comprehensive, strategically designed "direct approach" and "indirect approach" cluster structure analysis shows that K3Cit reduces the direct approach Mel-UA cluster size significantly irrespective of ensemble variation. Furthermore, the estimation of potentials of mean force (PMFs) reveals that the (UA)decamer-Mel interaction prevails over (UA)tetramer-Mel. The dynamic property (dimer existence autocorrelation functions) proves the essence of dimerization between Mel and UA in the absence and presence of K3Cit. Moreover, the calculation of the preferential interaction parameter provides the concentration at which Mel-K3Cit and UA-K3Cit interactions are predominant over the interaction of Mel and UA.
Collapse
Affiliation(s)
- Krishna Gopal Chattaraj
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
17
|
Sochor B, Düdükcü Ö, Lübtow MM, Schummer B, Jaksch S, Luxenhofer R. Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3494-3503. [PMID: 32203667 DOI: 10.1021/acs.langmuir.9b03460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded polymer micelles or nanoparticles are being continuously explored in the fields of drug delivery and nanomedicine. Commonly, a simple core-shell structure is assumed, in which the core incorporates the drug and the corona provides steric shielding, colloidal stability, and prevents protein adsorption. Recently, the interactions of the dissolved drug with the micellar corona have received increasing attention. Here, using small-angle neutron scattering, we provide an in-depth study of the differences in polymer micelle morphology of a small selection of structurally closely related polymer micelles at different loadings with the model compound curcumin. This work supports a previous study using solid-state nuclear magnetic resonance spectroscopy and we confirm that the drug resides predominantly in the core of the micelle at low drug loading. As the drug loading increases, neutron scattering data suggests that an inner shell is formed, which we interpret as the corona also starting to incorporate the drug, whereas the outer shell mainly contains water and the polymer. The presented data clearly shows that a better understanding of the inner morphology and the impact of the hydrophilic block can be important parameters for improved drug loading in polymer micelles as well as provide insights into the structure-property relationship.
Collapse
Affiliation(s)
- Benedikt Sochor
- Chair of X-Ray Microscopy, Department of Physics and Astronomy, University Würzburg, Campus Hubland Nord, Josef-Martin-Weg 63, 97074 Würzburg, Germany
| | - Özgür Düdükcü
- Chair of X-Ray Microscopy, Department of Physics and Astronomy, University Würzburg, Campus Hubland Nord, Josef-Martin-Weg 63, 97074 Würzburg, Germany
| | - Michael M Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Bernhard Schummer
- Fraunhofer Institute for Integrated Circuits, X-Ray Development Center EZRT, Flugplatzstraße 75, 90768 Fürth, Germany
| | - Sebastian Jaksch
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum, Lichtenberstraße 1, 85747 Garching, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Erlebach A, Muljajew I, Chi M, Bückmann C, Weber C, Schubert US, Sierka M. Predicting Solubility of Small Molecules in Macromolecular Compounds for Nanomedicine Application from Atomistic Simulations. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Erlebach
- Otto Schott Institute of Materials Research (OSIM) Friedrich Schiller University Jena Löbdergraben 32 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
| | - Irina Muljajew
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
| | - Mingzhe Chi
- Otto Schott Institute of Materials Research (OSIM) Friedrich Schiller University Jena Löbdergraben 32 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
| | - Christoph Bückmann
- Otto Schott Institute of Materials Research (OSIM) Friedrich Schiller University Jena Löbdergraben 32 Jena 07743 Germany
| | - Christine Weber
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
| | - Marek Sierka
- Otto Schott Institute of Materials Research (OSIM) Friedrich Schiller University Jena Löbdergraben 32 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
| |
Collapse
|
19
|
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J 2020; 28:308-315. [PMID: 32194332 PMCID: PMC7078564 DOI: 10.1016/j.jsps.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
Collapse
|
20
|
Paul R, Paul S. Computational Study of Encapsulation of Polyaromatic Hydrocarbons by Endo-Functionalized Receptors in Nonpolar Medium. J Chem Inf Model 2020; 60:212-225. [PMID: 31880935 DOI: 10.1021/acs.jcim.9b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a large group of organic pollutants produced from either natural or artificial sources during the incomplete combustion of fossil fuels or derived from various industrial processes (such as refinery processes of crude petroleum). They are seriously hazardous to human health, and removing them is of major importance. The complexation likeliness with and selective recognition of PAH guests by endo-functionalized molecular tube hosts (host-abu and host-abtu) in a nonpolar medium are investigated using classical molecular dynamics simulation and quantum calculation to probe the factors and the molecular mechanism involved in complexation processes. We examine the role of different guest molecules in the structural changes of hosts, a prelude to van der Waals interactions and binding free energy in the complexation process. These types of host-guest interactions depend on various factors. We find that (i) both the host molecules (host-abtu and host-abu) interact with the guest π-electron cloud almost equally and (ii) these interactions also depend on the molecular size of PAHs. The larger the nonpolar surface area of PAHs, the greater the interactions with the host, and the more extensive the π-electron cloud of the guest, the stronger the interactions. The linear PAHs interact more strongly than isomeric branched/curved PAHs, and the presence of heteroatoms on PAHs decreases the interactions with the host by creating repulsion between the lone pairs of heteroatoms and the π-electron cloud of the host. Noncovalent van der Waals interactions and N-H···π interactions dominate the high affinities of PAHs toward host-abu and host-abtu. The potential of mean force and molecular mechanics Poisson-Boltzmann surface area calculations reveal that all host-guest complexes are energetically stable.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
21
|
Muljajew I, Erlebach A, Weber C, Buchheim JR, Sierka M, Schubert US. A polyesteramide library from dicarboxylic acids and 2,2′-bis(2-oxazoline): synthesis, characterization, nanoparticle formulation and molecular dynamics simulations. Polym Chem 2020. [DOI: 10.1039/c9py01293a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and in silico approach enabled tailoring of polyesteramides with respect to formation of aqueous nanoparticle dispersions.
Collapse
Affiliation(s)
- Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Andreas Erlebach
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Otto Schott Institute of Materials Research (OSIM)
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Johannes R. Buchheim
- Institute for Technical Chemistry and Environmental Chemistry
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Marek Sierka
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Otto Schott Institute of Materials Research (OSIM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
22
|
Chattaraj KG, Paul S. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine–Uric Acid Clusters Responsible for Kidney Stones. J Phys Chem B 2019; 123:10483-10504. [DOI: 10.1021/acs.jpcb.9b08487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
23
|
Chattaraj KG, Paul S. Underlying mechanistic insights into the structural properties of melamine and uric acid complexes with compositional variation under ambient conditions. J Chem Phys 2019. [DOI: 10.1063/1.5094220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
24
|
Iesavand H, Rahmati M, Afzali D, Modiri S. Investigation on absorption and release of mercaptopurine anticancer drug from modified polylactic acid as polymer carrier by molecular dynamic simulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110010. [PMID: 31546426 DOI: 10.1016/j.msec.2019.110010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/10/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
The absorption and release of 6-mercaptopurine anticancer drug was investigated in biodegradable and biocompatible polymer of polylactic acid (PLA) using molecular dynamics simulation. For this purpose, the amount of mixing energy, radius of gyration, mean squared displacement and radial distribution function were computed and compared in concentrations of 5-36 wt% of 6-mercaptopurine drug. The simulation results show that increasing the concentration of the drug reduces mixing energy and PLA polymer carrier is able to carry 35.8 wt% of 6-mercaptopurine anticancer drug. Based on these results, the amount of 6-mercaptopurine release from PLA carrier 35.8 wt% of it in water environment is zero due to hydrophobic property of PLA and 6-mercaptopurine. Finally, polyethylene glycol (PEG) polymer with different percentages (10-30 wt%) was used to modify PLA carrier. The simulation results show that the rate of drug release increases by increasing the concentration of PEG polymer in the modified PLA carrier and also with increasing the percentage of drug loaded in the carrier and also the optimum weight percentage of PEG in modified PLA carrier for 35.8 wt% of drug concentration is 11 wt% and the rate of drug release is slower and equal to 4.4 molecules/ns.
Collapse
Affiliation(s)
- Homa Iesavand
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmoud Rahmati
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Dariush Afzali
- Department of Environment, Institute of Science and High Technology and Environmental Sciences, Kerman, Iran
| | - Sina Modiri
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
25
|
Paul R, Paul S. How does the complexation ability between host endo-functionalized molecular tube and strongly hydrophilic guest molecules in water depend on guest concentration? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Özeren HD, Balçık M, Ahunbay MG, Elliott JR. In Silico Screening of Green Plasticizers for Poly(vinyl chloride). Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hüsamettin D. Özeren
- Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Marcel Balçık
- Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - M. Göktuǧ Ahunbay
- Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - J. Richard Elliott
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
27
|
Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions With Various Polymers. J Pharm Sci 2019; 108:178-186. [DOI: 10.1016/j.xphs.2018.10.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
|
28
|
Mosquera-Giraldo LI, Borca CH, Parker AS, Dong Y, Edgar KJ, Beaudoin SP, Slipchenko LV, Taylor LS. Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs: Experimental and Computational Insight. Biomacromolecules 2018; 19:4593-4606. [PMID: 30376299 DOI: 10.1021/acs.biomac.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura I. Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Carlos H. Borca
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana, United States
| | - Andrew S. Parker
- Department of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, United States
| | - Yifan Dong
- Department of Chemistry, College of Science, Virginia Tech, Blacksburg, Virginia, United States
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia, United States
| | - Stephen P. Beaudoin
- Department of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, United States
| | - Lyudmila V. Slipchenko
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana, United States
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
29
|
Turpin ER, Taresco V, Al-Hachami WA, Booth J, Treacher K, Tomasi S, Alexander C, Burley J, Laughton CA, Garnett MC. In Silico Screening for Solid Dispersions: The Trouble with Solubility Parameters and χFH. Mol Pharm 2018; 15:4654-4667. [PMID: 30142269 DOI: 10.1021/acs.molpharmaceut.8b00637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The problem of predicting small molecule-polymer compatibility is relevant to many areas of chemistry and pharmaceutical science but particularly drug delivery. Computational methods based on Hildebrand and Hansen solubility parameters, and the estimation of the Flory-Huggins parameter, χ, have proliferated across the literature. Focusing on the need to develop amorphous solid dispersions to improve the bioavailability of poorly soluble drug candidates, an innovative, high-throughput 2D printing method has been employed to rapidly assess the compatibility of 54 drug-polymer pairings (nine drug compounds in six polymers). In this study, the first systematic assessment of the in silico methods for this application, neither the solubility parameter approach nor the calculated χ, correctly predicted drug-polymer compatibility. The theoretical limitations of the solubility parameter approach are discussed and used to explain why this approach is fundamentally unsuitable for predicting polymer-drug interactions. Examination of the original sources describing the method for calculating χ shows that only the enthalpic contributions to the term have been included, and the corrective entropic term is absent. The development and application of new in silico techniques, that consider all parts of the free energy of mixing, are needed in order to usefully predict small molecule-polymer compatibility and to realize the ambition of a drug-polymer screening method.
Collapse
Affiliation(s)
- Eleanor R Turpin
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | - Vincenzo Taresco
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | - Wathiq A Al-Hachami
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | | | | | | | - Cameron Alexander
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | - Jonathan Burley
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | - Charles A Laughton
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| | - Martin C Garnett
- School of Pharmacy , University of Nottingham , University Park , Nottingham NG7 2RD , U.K
| |
Collapse
|
30
|
Sousa SF, Peres J, Coelho M, Vieira TF. Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect 2018. [DOI: 10.1002/slct.201800855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE; BioSIM; Departamento de Biomedicina; Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro; 4200-319, Porto Portugal
| | - Joana Peres
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Manuel Coelho
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Tatiana F. Vieira
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| |
Collapse
|
31
|
Kutlehria S, Vhora I, Bagde A, Chowdhury N, Behl G, Patel K, Singh M. Tacrolimus Loaded PEG-Cholecalciferol Based Micelles for Treatment of Ocular Inflammation. Pharm Res 2018; 35:117. [DOI: 10.1007/s11095-018-2376-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/23/2018] [Indexed: 01/23/2023]
|
32
|
Das S, Paul S. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein. PLoS One 2018; 13:e0190209. [PMID: 29324869 PMCID: PMC5764265 DOI: 10.1371/journal.pone.0190209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023] Open
Abstract
The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS) cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.
Collapse
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- * E-mail:
| |
Collapse
|
33
|
Paul R, Paul S. Synergistic host–guest hydrophobic and hydrogen bonding interactions in the complexation between endo-functionalized molecular tube and strongly hydrophilic guest molecules in aqueous solution. Phys Chem Chem Phys 2018; 20:16540-16550. [DOI: 10.1039/c8cp01502c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular dynamics simulation study of the recognition of hydrophilic molecules by an endo-functionalized molecular tube in aqueous solution.
Collapse
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| |
Collapse
|
34
|
Korlepara DB, Bejagam KK, Balasubramanian S. Supramolecular Polymerization of N,N′,N″,N‴-tetra-(Tetradecyl)-1,3,6,8-pyrenetetracarboxamide: A Computational Study. J Phys Chem B 2017; 121:11492-11503. [DOI: 10.1021/acs.jpcb.7b10171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Divya B. Korlepara
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Karteek K. Bejagam
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
35
|
Das S, Paul S. Hydrotropic Solubilization of Sparingly Soluble Riboflavin Drug Molecule in Aqueous Nicotinamide Solution. J Phys Chem B 2017; 121:8774-8785. [DOI: 10.1021/acs.jpcb.7b05774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology, Guwahati,Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati,Assam 781039, India
| |
Collapse
|
36
|
Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles. Carbohydr Polym 2017; 177:67-76. [PMID: 28962797 DOI: 10.1016/j.carbpol.2017.08.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/30/2017] [Accepted: 08/26/2017] [Indexed: 01/27/2023]
Abstract
We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery.
Collapse
|
37
|
Das S, Paul S. Hydrotropic Action of Cationic Hydrotrope p-Toluidinium Chloride on the Solubility of Sparingly Soluble Gliclazide Drug Molecule: A Computational Study. J Chem Inf Model 2017; 57:1461-1473. [DOI: 10.1021/acs.jcim.7b00182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
38
|
Meunier M, Goupil A, Lienard P. Predicting drug loading in PLA-PEG nanoparticles. Int J Pharm 2017; 526:157-166. [DOI: 10.1016/j.ijpharm.2017.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
|
39
|
Göke K, Lorenz T, Repanas A, Schneider F, Steiner D, Baumann K, Bunjes H, Dietzel A, Finke JH, Glasmacher B, Kwade A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2017; 126:40-56. [PMID: 28532676 DOI: 10.1016/j.ejpb.2017.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Low aqueous solubility of active pharmaceutical ingredients presents a serious challenge in the development process of new drug products. This article provides an overview on some of the current approaches for the formulation of poorly water-soluble drugs with a special focus on strategies pursued at the Center of Pharmaceutical Engineering of the TU Braunschweig. These comprise formulation in lipid-based colloidal drug delivery systems and experimental as well as computational approaches towards the efficient identification of the most suitable carrier systems. For less lipophilic substances the preparation of drug nanoparticles by milling and precipitation is investigated for instance by means of microsystem-based manufacturing techniques and with special regard to the preparation of individualized dosage forms. Another option to overcome issues with poor drug solubility is the incorporation into nanospun fibers.
Collapse
Affiliation(s)
- Katrin Göke
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Thomas Lorenz
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Alexandros Repanas
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Frederic Schneider
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Denise Steiner
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Knut Baumann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Jan H Finke
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Birgit Glasmacher
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Arno Kwade
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
40
|
Xiang TX, Anderson BD. Molecular Dynamics Simulation of Amorphous Hydroxypropylmethylcellulose and Its Mixtures With Felodipine and Water. J Pharm Sci 2016; 106:803-816. [PMID: 27986292 DOI: 10.1016/j.xphs.2016.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Understanding drug-polymer molecular interactions, their miscibility, supersaturation potential, and the effects of water uptake may be invaluable for selecting amorphous polymer dispersions that can maximize the oral bioavailability of poorly water-soluble drugs. Molecular dynamics simulations were performed using a model for hydroxypropylmethylcellulose (HPMC) resembling the substitution patterns found experimentally. HPMC at low and high water contents (0.9%-23.0% wt/wt) and mixtures with a hydrophobic drug, felodipine (FEL), were constructed. Tg values and densities after ∼30 ns aging at 298 K were close to published results. Except for hydrogen bonds (HBs) between the 5-O- and a 3-OH group in a neighboring repeat unit, HPMC oxygen atoms have a low HB probability (p < 0.1) perhaps due to shielding by surrounding substituents. Water molecules tend to be isolated at low water content while clusters were prevalent at ≥10.7% water. The Flory-Huggins FEL-HPMC interaction parameter (-0.20 ± 0.07) predicts complete miscibility at all HPMC compositions, in agreement with experiments. However, HBs between the FEL-N-H and HPMC favoring miscibility are disrupted with increasing water. Apparent diffusion coefficients versus water content were generated for water and FEL and a theory for the non-Einsteinian nature of water diffusion is proposed.
Collapse
Affiliation(s)
- Tian-Xiang Xiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536
| | - Bradley D Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
41
|
Chun BJ, Lu J, Weck M, Jang SS. Characterization of molecular association of poly(2-oxazoline)s-based micelles with various epoxides and diols via the Flory-Huggins theory: a molecular dynamics simulation approach. Phys Chem Chem Phys 2016; 17:29161-70. [PMID: 26463559 DOI: 10.1039/c5cp03854e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrolytic kinetic resolution (HKR) of epoxides has been performed in a shell-crosslinked micellar (SCM) nanoreactor consisting of amphiphilic triblock copolymers based on poly(2-oxazline)s polymer derivatives with attached Co(iii)-salens to the micelle core. To investigate the effect of the molecular interaction of reactant/product molecules with the SCM nanoreactor on the rate of HKR, we calculated the Flory-Huggins interaction parameters (χ) using the molecular dynamics simulation method. For this, the blend systems were constructed with various compositions such as 15, 45, and 70 wt% of the reactant/product molecules with respect to the polymers such as poly(2-methyl-2-oxazoline) (PMOX), poly(2-(3-butinyl)2-oxazoline) (PBOX), and poly(methyl-3-oxazol-2-yl)pentanoate with Co(iii)-salen (PSCoX). From the χ parameters, we demonstrate that the miscibility of reactants/products with polymers has a strong correlation with the experimental reaction rate of the HKR: phenyl glycidyl ether (Reac-OPh) > epoxyhexane (Reac-C4) > styrene oxide (Reac-Ph) > epichlorohydrin (Reac-Cl). To validate this finding, we also conducted the potential of mean force analysis using steered molecular dynamics simulation for the molecular displacement of Reac-Cl and Reac-OPh through PMOX and PSCoX, revealing that the free energy reduction was greater when Reac-OPh molecule enters the polymer phase compared to Reac-Cl, which agrees with the findings from the χ parameters calculations.
Collapse
Affiliation(s)
- Byeong Jae Chun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, USA and Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, USA.
| | - Jie Lu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Marcus Weck
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Seung Soon Jang
- Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, USA. and Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
42
|
Erlebach A, Ott T, Otzen C, Schubert S, Czaplewska J, Schubert US, Sierka M. Thermodynamic compatibility of actives encapsulated into PEG-PLA nanoparticles: In Silico predictions and experimental verification. J Comput Chem 2016; 37:2220-7. [PMID: 27425625 DOI: 10.1002/jcc.24449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022]
Abstract
Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial-and-error approach is cumbersome and time-consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory-Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andreas Erlebach
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Timm Ott
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Christoph Otzen
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Otto-Schott-Str. 41, Jena, 07745, Germany
| | - Justyna Czaplewska
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena, 07743, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena, 07743, Germany
| | - Marek Sierka
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
43
|
Ren QB, Ma SH, Chen YJ, Sun LZ, Cao WP. Numerical simulation on polymer translocation into crowded environment with nanoparticles. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Pimecrolimus micelle exhibits excellent therapeutic effect for Keratoconjunctivitis Sicca. Colloids Surf B Biointerfaces 2016; 140:1-10. [DOI: 10.1016/j.colsurfb.2015.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 12/25/2022]
|
45
|
Das S, Paul S. Computer Simulation Studies of the Mechanism of Hydrotrope-Assisted Solubilization of a Sparingly Soluble Drug Molecule. J Phys Chem B 2016; 120:3540-50. [DOI: 10.1021/acs.jpcb.5b11902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shubhadip Das
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department
of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
46
|
Munkhbat O, Garzoni M, Raghupathi KR, Pavan GM, Thayumanavan S. Role of Aromatic Interactions in Temperature-Sensitive Amphiphilic Supramolecular Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2874-81. [PMID: 26938461 PMCID: PMC4913888 DOI: 10.1021/acs.langmuir.5b04540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aromatic interactions were found to greatly influence the temperature-dependent dynamic behavior within supramolecular assemblies. Using an amphiphilic dendron, we systematically changed the hydrophobic groups introducing increasing levels of aromaticity while keeping the hydrophilic part constant. We show that the supramolecular assemblies become less sensitive to temperature changes when aromatic interactions in the aggregate are increased. Conversely, the absence of aromaticity in the hydrophobic moieties produces temperature-sensitive aggregates. These results show that subtle molecular-level interactions can be utilized to control temperature-sensitive behavior in the nanoscale. These findings open up new design strategies to rationally tune the behavior of stimuli-responsive supramolecular assemblies on multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Oyuntuya Munkhbat
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Matteo Garzoni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno 6928, Switzerland
| | - Krishna R. Raghupathi
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Giovanni M. Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno 6928, Switzerland
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
47
|
Das S, Paul S. Mechanism of Hydrotropic Action of Hydrotrope Sodium Cumene Sulfonate on the Solubility of Di-t-Butyl-Methane: A Molecular Dynamics Simulation Study. J Phys Chem B 2016; 120:173-83. [PMID: 26684411 DOI: 10.1021/acs.jpcb.5b09668] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrotropes are special class of amphiphilic molecules that have an ability to solubilize the insoluble or sparingly soluble molecules in water. To find out the mechanism of hydrotropic action of hydrotropes on hydrophobic molecules, we have carried out classical molecular dynamics simulation of hydrophobic solute di-t-butyl-methane (DTBM) and hydrotrope sodium cumene sulfonate (SCS) in water with a regime of SCS concentrations. Our study demonstrates that, above the minimum hydrotrope concentration (MHC), the self-aggregation of SCS starts, and it creates a micellar-like environment in which the hydrophobic tail part of SCS points inward while its hydrophilic sulfonate group points outward to make favorable contact with water molecules. The formation of the hydrophobic core of SCS cluster creates a hydrophobic environment where the hydrophobic DTBM molecules are encapsulated. Interestingly, the determination of average water-SCS hydrogen bonds further suggests that the aggregate formation of SCS molecules has a negligible influence on it. Moreover, the calculations of Flory-Huggins interaction parameters also reveal favorable interactions between hydrotrope SCS and solute DTBM molecules. The implications of these findings on the mechanism of hydrotrope assisted enhanced solubility of hydrophobic molecules are discussed.
Collapse
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| |
Collapse
|
48
|
Colombo C, Gatti S, Ferrari R, Casalini T, Cuccato D, Morosi L, Zucchetti M, Moscatelli D. Self-assembling amphiphilic PEGylated block copolymers obtained through RAFT polymerization for drug-delivery applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.43084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Claudio Colombo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zürich, Vladimir-Prelog-Weg 1; 8093 Zürich Switzerland
| | - Simone Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica, Politecnico Di Milano; 20131 Milano
| | - Raffaele Ferrari
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zürich, Vladimir-Prelog-Weg 1; 8093 Zürich Switzerland
| | - Danilo Cuccato
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zürich, Vladimir-Prelog-Weg 1; 8093 Zürich Switzerland
| | - Lavinia Morosi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Massimo Zucchetti
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Davide Moscatelli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica, Politecnico Di Milano; 20131 Milano
| |
Collapse
|
49
|
Enciso AE, Garzoni M, Pavan GM, Simanek EE. Influence of linker groups on the solubility of triazine dendrimers. NEW J CHEM 2015. [DOI: 10.1039/c4nj00917g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice of linking diamine has profound influence on the solubility of triazine dendrimers.
Collapse
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry
- Texas Christian University
- Fort Worth
- USA
| | - Matteo Garzoni
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- 6962 Manno
- Switzerland
| | - Giovanni M. Pavan
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- 6962 Manno
- Switzerland
| | - Eric E. Simanek
- Department of Chemistry
- Texas Christian University
- Fort Worth
- USA
| |
Collapse
|
50
|
Molecular dynamics simulation of some cyclic compounds solubilization into the nanometric core of Cetyltrimethylammonium Bromide micelle. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|