1
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
2
|
Dingjan T, Futerman AH. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183701. [PMID: 34302797 DOI: 10.1016/j.bbamem.2021.183701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Sphingolipids can be differentiated from other membrane lipids by the distinctive chemistry of the sphingoid long chain base (LCB), which is generated by the condensation of an amino acid (normally but not always serine) and a fatty acyl CoA (normally palmitoyl CoA) by the pyridoxal phosphate-dependent enzyme, serine palmitoyl transferase (SPT). The first five carbon atoms of the sphingoid LCB, herein defined as the 'sphingoid motif', are largely responsible for the unique chemical and biophysical properties of sphingolipids since they can undergo a relatively large number (compared to other lipid species) of molecular interactions with other membrane lipids, via hydrogen-bonding, charge-pairing, hydrophobic and van der Waals interactions. These interactions are responsible, for instance, for the association of sphingolipids with cholesterol in the membrane lipid bilayer. Here, we discuss some of the unique properties of this sphingoid motif, and in addition to outlining how this structural motif drives intra-bilayer interactions, discuss the atomic details of the interactions with two critical players in the biosynthetic pathway, namely SPT, and the ceramide transport protein, CERT. In the former, the selectivity of sphingolipid synthesis relies on a hydrogen bond interaction between Lys379 of SPTLC2 and the l-serine sidechain hydroxyl moiety. In the latter, the entire sphingoid motif is stereoselectively recognized by a hydrogen-bonding network involving all three sphingoid motif heteroatoms. The remarkable selectivity of these interactions, and the subtle means by which these interactions are modified and regulated in eukaryotic cells raises a number of challenging questions about the generation of these proteins, and of their interactions with the sphingoid motif in evolutionary history.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
3
|
Yu Y, Klauda JB. Update of the CHARMM36 United Atom Chain Model for Hydrocarbons and Phospholipids. J Phys Chem B 2020; 124:6797-6812. [PMID: 32639155 DOI: 10.1021/acs.jpcb.0c04795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate lipid force field (FF) parameters used in molecular dynamics (MD) simulations are crucial for understanding the properties of lipid-containing systems and biological processes related to lipids. The last update of the CHARMM36 united atom chain model (C36UA) was in 2013 [Lee, S. J. Phys. Chem. B 2014, 118, 547 556]; it utilized CHARMM36 (C36) lipid FF parameters for headgroups and OPLS-UA Lennard-Jones (LJ) parameters for tails. Simulations with the FF were able to reproduce many experimental observables of lipid bilayers accurately, but to be more applicable for a wide range of lipids, additional FF parameter optimization was needed. In this work, we present an update of the model, named C36UAr. The parameterization included the LJ parameters for hydrocarbons and related dihedrals. Bulk liquid properties (density, heat of vaporization, isothermal compressibility, and diffusion constant) of model compounds were used as targets for the LJ parameter fitting, and dihedrals were fit to either quantum mechanical (QM) or potential of mean force (PMF) calculations using C36. Thermodynamic reweighting was used to further improve the parameters. Bilayer simulations of various lipid headgroups (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol) and tails (saturated, monounsaturated, and polyunsaturated) were performed to validate the model, and significant improvements were seen in bilayer properties, including surface area, membrane thicknesses, NMR deuterium order parameters, and density profiles. C36UAr was also compared to the hydrogen mass repartitioning (HMR) method. The high accuracy and competitive efficiency shown in this study make C36UAr one of the best choices for studies of membrane structure and membrane-associated proteins.
Collapse
|
4
|
Doktorova M, Kučerka N, Kinnun JJ, Pan J, Marquardt D, Scott HL, Venable RM, Pastor RW, Wassall SR, Katsaras J, Heberle FA. Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Small-Angle Neutron and X-ray Scattering Data. J Phys Chem B 2020; 124:5186-5200. [PMID: 32468822 DOI: 10.1021/acs.jpcb.0c03389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.,Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Tang HF, Zhong H, Zhang LL, Gong MX, Song SQ, Tian QP. Theoretical investigations into the intermolecular hydrogen-bonding interactions of N-(hydroxymethyl)acetamide dimers. J Mol Model 2018; 24:139. [PMID: 29855720 DOI: 10.1007/s00894-018-3672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
The structures of the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers have been fully optimized at B3LYP/6-311++G** level. The intermolecular hydrogen bonding interaction energies have been calculated using the B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p), MP2(full)/6-311++G** and MP2(full)/6-311++G(2df,2p) methods, respectively. The results show that the O-H···O, N-H···O, O-H···N, and C-H···O hydrogen bonding interactions could exist in N-(hydroxymethyl)acetamide dimers, and the O-H···O, N-H···O, and O-H···N hydrogen bonding interactions could be stronger than C-H···O. The three-dimensional network structure formed by ceramide molecules through intermolecular hydrogen bonding interactions may be the main reason why the stratum corneum of skin could prevent foreign substances from entering our body, as is in accordance with the experimental results. The stability of hydrogen-bonding interactions follow the order of (a) > (b) ≈ (c) > (d) > (e) ≈ (f) > (g) > (h). The analyses of the energy decomposition, frequency, atoms in molecules (AIM), natural bond orbital (NBO), and electron density shift are used to further reveal the nature of the complex formation. In the range of 263.0-328.0 K, the complex is formed via an exothermic reaction, and the solvent with lower temperature and dielectric constant is favorable to this process. Graphical abstract The structures and the O-H···O=C, N-H···O=C and C-H···O=C H-bonding interactions in the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers were investigated using the B3LYP and MP2(full) methods.
Collapse
Affiliation(s)
- Hai-Fei Tang
- Xiangtan Medicine & Health Vocational College, Xiangtan, 411104, People's Republic of China
| | - Hua Zhong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Ling-Ling Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Ming-Xing Gong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shu-Qin Song
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Qing-Ping Tian
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
7
|
Di Scala C, Fantini J, Yahi N, Barrantes FJ, Chahinian H. Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter. Biomolecules 2018; 8:biom8020031. [PMID: 29789479 PMCID: PMC6022874 DOI: 10.3390/biom8020031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.
Collapse
Affiliation(s)
- Coralie Di Scala
- INMED, INSERM U1249, Parc Scientifique de Luminy, 163 Avenue de Luminy, BP13 13273 Marseille CEDEX 09, France.
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA⁻CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
8
|
Arsov Z, González-Ramírez EJ, Goñi FM, Tristram-Nagle S, Nagle JF. Phase behavior of palmitoyl and egg sphingomyelin. Chem Phys Lipids 2018; 213:102-110. [PMID: 29689259 DOI: 10.1016/j.chemphyslip.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
Despite the biological significance of sphingomyelins (SMs), there is far less structural information available for SMs compared to glycerophospholipids. Considerable confusion exists in the literature regarding even the phase behavior of SM bilayers. This work studies both palmitoyl (PSM) and egg sphingomyelin (ESM) in the temperature regime from 3 °C to 55 °C using X-ray diffraction and X-ray diffuse scattering on hydrated, oriented thick bilayer stacks. We observe clear evidence for a ripple phase for ESM in a large temperature range from 3 °C to the main phase transition temperature (TM) of ∼38 °C. This unusual stability of the ripple phase was not observed for PSM, which was in a gel phase at 3 °C, with a gel-to-ripple transition at ∼24 °C and a ripple-to-fluid transition at ∼41 °C. We also report structural results for all phases. In the gel phase at 3 °C, PSM has chains tilted by ∼30° with an area/lipid ∼45 Å2 as determined by wide angle X-ray scattering. The ripple phases for both PSM and ESM have temperature dependent ripple wavelengths that are ∼145 Å near 30 °C. In the fluid phase, our electron density profiles combined with volume measurements allow calculation of area/lipid to be ∼64 Å2 for both PSM and ESM, which is larger than that from most of the previous molecular dynamics simulations and experimental studies. Our study demonstrates that oriented lipid films are particularly well-suited to characterize ripple phases since the scattering pattern is much better resolved than in unoriented samples.
Collapse
Affiliation(s)
- Zoran Arsov
- Department of Condensed Matter Physics, Laboratory of Biophysics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Emilio J González-Ramírez
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Felix M Goñi
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | - John F Nagle
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
9
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev Anal Chem 2017; 47:418-437. [PMID: 28340309 DOI: 10.1080/10408347.2017.1310613] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current studies related to lipid identification and determination, or lipidomics in biological samples, are one of the most important issues in modern bioanalytical chemistry. There are many articles dedicated to specific analytical strategies used in lipidomics in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to a comprehensive review of the actual analytical methodologies used in lipidomics. The aim of this article is to characterize the lipidomics methods used in modern bioanalysis according to the methodological point of view: (1) chromatography/separation methods, (2) spectroscopic methods and (3) mass spectrometry and also hyphenated methods. In the first part, we discussed thin layer chromatography (TLC), high-pressure liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). The second part includes spectroscopic techniques such as Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). The third part is a synthetic review of mass spectrometry, matrix-assisted laser desorption/ionization (MALDI), hyphenated methods, which include liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and also multidimensional techniques. Other aspects are the possibilities of the application of the described methods in lipidomics studies. Due to the fact that the exploration of new methods of lipidomics analysis and their applications in clinical and medical studies are still challenging for researchers working in life science, we hope that this review article will be very useful for readers.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Kraków Higher School of Health Promotion , Krakow , Poland
| | - Kamila Kochan
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,c Centre for Biospectroscopy and School of Chemistry , Monash University , Clayton , Victoria , Australia
| | - Justyna Walczak
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| | - Małgorzata Barańska
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,e Department of Chemical Physics, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland
| | - Wojciech Piekoszewski
- f Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland.,g School of Biomedicine , Far Eastern Federal University , Vladivostok , Russia
| | - Bogusław Buszewski
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
10
|
García-Linares S, Rivera-de-Torre E, Palacios-Ortega J, Gavilanes JG, Martínez-del-Pozo Á. The Metamorphic Transformation of a Water-Soluble Monomeric Protein Into an Oligomeric Transmembrane Pore. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2017. [DOI: 10.1016/bs.abl.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Moore TC, Iacovella CR, Hartkamp R, Bunge AL, McCabe C. A Coarse-Grained Model of Stratum Corneum Lipids: Free Fatty Acids and Ceramide NS. J Phys Chem B 2016; 120:9944-58. [PMID: 27564869 PMCID: PMC5287476 DOI: 10.1021/acs.jpcb.6b08046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ceramide (CER)-based biological membranes are used both experimentally and in simulations as simplified model systems of the skin barrier. Molecular dynamics studies have generally focused on simulating preassembled structures using atomistically detailed models of CERs, which limit the system sizes and time scales that can practically be probed, rendering them ineffective for studying particular phenomena, including self-assembly into bilayer and lamellar superstructures. Here, we report on the development of a coarse-grained (CG) model for CER NS, the most abundant CER in human stratum corneum. Multistate iterative Boltzmann inversion is used to derive the intermolecular pair potentials, resulting in a force field that is applicable over a range of state points and suitable for studying ceramide self-assembly. The chosen CG mapping, which includes explicit interaction sites for hydroxyl groups, captures the directional nature of hydrogen bonding and allows for accurate predictions of several key structural properties of CER NS bilayers. Simulated wetting experiments allow the hydrophobicity of CG beads to be accurately tuned to match atomistic wetting behavior, which affects the whole system, since inaccurate hydrophobic character is found to unphysically alter the lipid packing in hydrated lamellar states. We find that CER NS can self-assemble into multilamellar structures, enabling the study of lipid systems more representative of the multilamellar lipid structures present in the skin barrier. The coarse-grained force field derived herein represents an important step in using molecular dynamics to study the human skin barrier, which gives a resolution not available through experiment alone.
Collapse
Affiliation(s)
- Timothy C. Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Christopher R. Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Remco Hartkamp
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Annette L. Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
12
|
The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:304-10. [DOI: 10.1016/j.bbamem.2015.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
|
13
|
do Canto AM, Santos PD, Martins J, Loura LM. Behavior of pyrene as a polarity probe in palmitoylsphingomyelin and palmitoylsphingomyelin/cholesterol bilayers: A molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Venable RM, Sodt AJ, Rogaski B, Rui H, Hatcher E, MacKerell AD, Pastor RW, Klauda JB. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 2015; 107:134-45. [PMID: 24988348 DOI: 10.1016/j.bpj.2014.05.034] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/02/2014] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
The C36 CHARMM lipid force field has been extended to include sphingolipids, via a combination of high-level quantum mechanical calculations on small molecule fragments, and validation by extensive molecular dynamics simulations on N-palmitoyl and N-stearoyl sphingomyelin. NMR data on these two molecules from several studies in bilayers and micelles played a strong role in the development and testing of the force field parameters. Most previous force fields for sphingomyelins were developed before the availability of the detailed NMR data and relied on x-ray diffraction of bilayers alone for the validation; these are shown to be too dense in the bilayer plane based on published chain order parameter data from simulations and experiments. The present simulations reveal O-H:::O-P intralipid hydrogen bonding occurs 99% of the time, and interlipid N-H:::O=C (26-29%, depending on the lipid) and N-H:::O-H (17-19%). The interlipid hydrogen bonds are long lived, showing decay times of 50 ns, and forming strings of lipids, and leading to reorientational correlation time of nearly 100 ns. The spontaneous radius of curvature for pure N-palmitoyl sphingomyelin bilayers is estimated to be 43-100 Å, depending on the assumptions made in assigning a bending constant; this unusual positive curvature for a two-tailed neutral lipid is likely associated with hydrogen bond networks involving the NH of the sphingosine group.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexander J Sodt
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Brent Rogaski
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Huan Rui
- Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Elizabeth Hatcher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland.
| |
Collapse
|
15
|
Barriga HMG, Parsons ES, McCarthy NLC, Ces O, Seddon JM, Law RV, Brooks NJ. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3678-3686. [PMID: 25742392 DOI: 10.1021/la504935c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.
Collapse
Affiliation(s)
- Hanna M G Barriga
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Edward S Parsons
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Nicola L C McCarthy
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Sovová Ž, Berka K, Otyepka M, Jurečka P. Coarse-grain simulations of skin ceramide NS with newly derived parameters clarify structure of melted phase. J Phys Chem B 2015; 119:3988-98. [PMID: 25679231 DOI: 10.1021/jp5092366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ceramides are lipids that are involved in numerous biologically important structures (e.g., the stratum corneum and ceramide-rich platforms) and processes (e.g., signal transduction and membrane fusion), but their behavior is not fully understood. We report coarse-grain force field parameters for N-lignocerylsphingosine (ceramide NS, also known as ceramide 2) that are consistent with the Martini force field. These parameters were optimized for simulations in the gel phase and validated against atomistic simulations. Coarse-grained simulations with our parameters provide areas per lipid, membrane thicknesses, and electron density profiles that are in good agreement with atomistic simulations. Properties of the simulated membranes are compared with available experimental data. The obtained parameters were used to model the phase behavior of ceramide NS as a function of temperature and hydration. At low water content and above the main phase transition temperature, the bilayer melts into an irregular phase, which may correspond to the unstructured melted-chain phase observed in X-ray diffraction experiments. The developed parameters also reproduce the extended conformation of ceramide, which may occur in the stratum corneum. The parameters presented herein will facilitate studies on important complex functional structures such as the uppermost layer of the skin and ceramide-rich platforms in phospholipid membranes.
Collapse
Affiliation(s)
- Žofie Sovová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17 Listopadu 12, 77146 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
17
|
Alm I, García-Linares S, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Cholesterol stimulates and ceramide inhibits Sticholysin II-induced pore formation in complex bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:925-31. [PMID: 25546840 DOI: 10.1016/j.bbamem.2014.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
The pore forming capacity of Sticholysin II (StnII; isolated from Stichodactyla helianthus) in bilayer membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), palmitoylsphingomyelin (PSM) and either cholesterol or palmitoyl ceramide (PCer) has been examined. The aim of the study was to elucidate how the presence of differently ordered PSM domains affected StnII oligomerization and pore formation. Cholesterol is known to enhance pore formation by StnII, and our results confirmed this and provide kinetic information for the process. The effect of cholesterol on bilayer permeabilization kinetics was concentration-dependent. In the concentration regime used (2.5-10nmol cholesterol in POPC:PSM 80:20 by nmol), cholesterol also increased the acyl chain order in the fluid PSM domain and thus decreased bilayer fluidity, suggesting that fluidity per se was not responsible for cholesterol's effect. Addition of PCer (2.5-10nmol) to the POPC:PSM (80:20 by nmol) bilayers attenuated StnII-induced pore formation, again in a concentration-dependent fashion. This addition also led to the formation of a PCer-rich gel phase. Addition of cholesterol to PCer-containing membranes could partially reduce the inhibitory effect of PCer on StnII pore formation. We conclude that the physical state of PSM (as influenced by either cholesterol or PCer) affected StnII binding and pore formation under the conditions examined.
Collapse
Affiliation(s)
- Ida Alm
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | - J Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
18
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
19
|
Guixà-González R, Ramírez-Anguita JM, Kaczor AA, Selent J. Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers. Methods Cell Biol 2014; 117:63-90. [PMID: 24143972 DOI: 10.1016/b978-0-12-408143-7.00004-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
G protein-coupled receptors (GPCRs) are one of the most relevant superfamilies of transmembrane proteins as they participate in an important variety of biological events. Recently, the scientific community is witnessing an advent of a GPCR crystallization age along with impressive improvements achieved in the field of computer simulations during the last two decades. Computer simulation techniques such as molecular dynamics (MD) simulations are now frequent tools to study the dynamic behavior of GPCRs and, more importantly, to model the complex membrane environment where these proteins spend their lifetime. Thanks to these tools, GPCRs can be simulated not only longer but also in a more "physiological" fashion. In this scenario, scientists are taking advantage of such advances to approach certain phenomena such as GPCR oligomerization occurring only at timescales not reachable until now. Thus, despite current MD simulations having important limitations today, they have become an essential tool to study key biophysical properties of GPCRs and GPCR oligomers.
Collapse
Affiliation(s)
- Ramon Guixà-González
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra/IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Dutagaci B, Becker-Baldus J, Faraldo-Gómez JD, Glaubitz C. Ceramide-lipid interactions studied by MD simulations and solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2511-9. [PMID: 24882733 DOI: 10.1016/j.bbamem.2014.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Ceramides play a key modulatory role in many cellular processes, which results from their effect on the structure and dynamics of biological membranes. In this study, we investigate the influence of C16-ceramide (C16) on the biophysical properties of DMPC lipid bilayers using solid-state NMR and atomistic molecular dynamics (MD) simulations. MD simulations and NMR measurements were carried out for a pure DMPC bilayer and for a 20% DMPC-C16 mixture. Calculated key structural properties, namely area per lipid, chain order parameters, and mass density profiles, indicate that C16 has an ordering effect on the DMPC bilayer. Furthermore, the simulations predict that specific hydrogen-bonds form between DMPC and C16 molecules. Multi-nuclear solid-state NMR was used to verify these theoretical predictions. Chain order parameters extracted from (13)C(1)H dipole couplings were measured for both lipid and ceramide and follow the trend suggested by the MD simulations. Furthermore, (1)H-MAS NMR experiments showed a direct contact between ceramide and lipids.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
21
|
Guo S, Moore TC, Iacovella CR, Strickland LA, McCabe C. Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry. J Chem Theory Comput 2013; 9:5116-5126. [PMID: 24501589 DOI: 10.1021/ct400431e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment.
Collapse
Affiliation(s)
- Shan Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - L Anderson Strickland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA ; Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
22
|
Artetxe I, Sergelius C, Kurita M, Yamaguchi S, Katsumura S, Slotte JP, Maula T. Effects of sphingomyelin headgroup size on interactions with ceramide. Biophys J 2013; 104:604-12. [PMID: 23442911 DOI: 10.1016/j.bpj.2012.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 12/12/2012] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelins (SMs) and ceramides are known to interact favorably in bilayer membranes. Because ceramide lacks a headgroup that could shield its hydrophobic body from unfavorable interactions with water, accommodation of ceramide under the larger phosphocholine headgroup of SM could contribute to their favorable interactions. To elucidate the role of SM headgroup for SM/ceramide interactions, we explored the effects of reducing the size of the phosphocholine headgroup (removing one, two, or three methyls on the choline moiety, or the choline moiety itself). Using differential scanning calorimetry and fluorescence spectroscopy, we found that the size of the SM headgroup had no marked effect on the thermal stability of ordered domains formed by SM analog/palmitoyl ceramide (PCer) interactions. In more complex bilayers composed of a fluid glycerophospholipid, SM analog, and PCer, the thermal stability and molecular order of the laterally segregated gel domains were roughly identical despite variation in SM headgroup size. We suggest that that the association between PCer and SM analogs was stabilized by ceramide's aversion for disordered phospholipids, by interfacial hydrogen bonding between PCer and the SM analogs, and by attractive van der Waals' forces between saturated chains of PCer and SM analogs.
Collapse
Affiliation(s)
- Ibai Artetxe
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Rabinovich AL, Lyubartsev AP. Computer simulation of lipid membranes: Methodology and achievements. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213070060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Ryabova NY, Sheverev SG, Hauß T. Neutron diffraction studies of oral stratum corneum model lipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:621-9. [DOI: 10.1007/s00249-013-0910-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
|
25
|
Lönnfors M, Långvik O, Björkbom A, Slotte JP. Cholesteryl phosphocholine--a study on its interactions with ceramides and other membrane lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2319-2329. [PMID: 23356741 DOI: 10.1021/la3051324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We prepared cholesteryl phosphocholine (CholPC) by chemical synthesis and studied its interactions with small (ceramide and cholesterol) and large headgroup (sphingomyelin (SM) and phosphatidylcholine) colipids in bilayer membranes. We established that CholPC could form bilayers (giant uni- and multilamellar vesicles, as well as extruded large unilamellar vesicles) with both ceramides and cholesterol (initial molar ratio 1:1). The extruded bilayers appeared to be fluid, although highly ordered, even when the ceramide had an N-linked palmitoyl acyl chain. In binary systems containing CholPC and either palmitoyl SM or 1,2-dipalmitoyl-sn-glycero-3-phospholine, CholPC markedly destabilized the gel phase of the respective large headgroup lipid. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, CholPC was much less efficient than cholesterol in ordering the acyl chains. In complex bilayers containing POPC and cholesterol or palmitoyl ceramide, CholPC appeared to prefer interacting with the small headgroup lipids over POPC. When the degree of order in CholPC/PCer bilayers was compared to Chol/PSM bilayers, CholPC/PCer bilayers were more disordered (based on DPH anisotropy). This finding may result from different headgroup orientation and dynamics in CholPC and PSM. Our results overall can be understood if one takes into account the molecular shape of CholPC (large polar headgroup and modest size hydrophobic part) when interpreting molecular interactions between small and large headgroup colipids. The results are also consistent with the proposed umbrella model" for explaining cholesterol/colipid interactions.
Collapse
Affiliation(s)
- Max Lönnfors
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
26
|
Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys J 2012; 103:2465-74. [PMID: 23260048 DOI: 10.1016/j.bpj.2012.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 01/01/2023] Open
Abstract
Ceramide produced from sphingomyelin in the plasma membrane is purported to affect signaling through changes in the membrane's physical properties. Thermal behavior of N-palmitoyl sphingomyelin (PSM) and N-palmitoyl ceramide (PCer) mixtures in excess water has been monitored by ²H NMR spectroscopy and compared to differential scanning calorimetry (DSC) data. The alternate use of either perdeuterated or proton-based N-acyl chain PSM and PCer in our ²H NMR studies has allowed the separate observation of gel-fluid transitions in each lipid in the presence of the other one, and this in turn has provided direct information on the lipids' miscibility over a wide temperature range. The results provide further evidence of the stabilization of the PSM gel state by PCer. Moreover, overlapping NMR and DSC data reveal that the DSC-signals parallel the melting of the major component (PSM) except at intermediate (20 and 30 mol %) fractions of PCer. In such cases, the DSC endotherm reports on the presumably highly cooperative melting of PCer. Up to at least 50 mol % PCer, PSM and PCer mix ideally in the liquid crystalline phase; in the gel phase, PCer becomes incorporated into PSM:PCer membranes with no evidence of pure solid PCer.
Collapse
|
27
|
Jämbeck JPM, Lyubartsev AP. Another Piece of the Membrane Puzzle: Extending Slipids Further. J Chem Theory Comput 2012; 9:774-84. [PMID: 26589070 DOI: 10.1021/ct300777p] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To be able to model complex biological membranes in a more realistic manner, the force field Slipids (Stockholm lipids) has been extended to include parameters for sphingomyelin (SM), phosphatidylglycerol (PG), phosphatidylserine (PS) lipids, and cholesterol. Since the parametrization scheme was faithful to the scheme used in previous editions of Slipids, all parameters are consistent and fully compatible. The results of careful validation of a number of key structural properties for one and two component lipid bilayers are in excellent agreement with experiments. Potentials of mean force for transferring water across binary mixtures of lipids and cholesterol were also computed in order to compare water permeability rates to experiments. In agreement with experimental and simulation studies, it was found that the permeability and partitioning of water is affected by cholesterol in lipid bilayers made of saturated lipids to the largest extent. With the extensions of Slipids presented here, it is now possible to study complex systems containing many different lipids and proteins in a fully atomistic resolution in the isothermic-isobaric (NPT) ensemble, which is the proper ensemble for membrane simulations.
Collapse
Affiliation(s)
- Joakim P M Jämbeck
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Alexander P Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|